ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal-organic framework (MOF). Incorporation of correlated vacancy defects within the framewor k affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF.
We present a detailed study of the mechanism by which the INVERT method [Phys. Rev. Lett. 104, 125501] guides structure refinement of disordered materials. We present a number of different possible implementations of the central algorithm and explore the question of algorithm weighting. Our analysis includes quantification of the relative contributions of variance and fit-to-data terms during structure refinement, which leads us to study the roles of density fluctuations and configurational jamming in the RMC fitting process. We present a parametric study of the pair distribution function solution space for C60, a-Si and a-SiO2, which serves to highlight the difficulties faced in developing a transferable weighting scheme.
We suggest two metrics for assessing the quality of atomistic configurations of disordered materials, both of which are based on quantifying the orientational distribution of neighbours around each atom in the configuration. The first metric is that of geometric invariance: i.e., the extent to which the neighbour arrangements are as similar as possible for different atoms, allowing for variations in frame of reference. The second metric concerns the degree of local symmetry. We propose that for a set of configurations with equivalent pair correlations, ranking highly those configurations with low geometric invariance but with high local symmetry selects for structural simplicity in a way that does not rely on formal group theoretical language (and hence long-range periodic order). We show that these metrics rank a range of SiO2 and a-Si configurations in an intuitive manner, and are also significantly more sensitive to unphysical features of those configurations in a way that metrics based on pair correlations are not. We also report that implementation of the metrics within a reverse Monte Carlo algorithm gives rise to an energy landscape that is too coarse (at least in this initial implementation) for amorphous structure solution.
We describe a web-based tool (PASCal; Principal Axis Strain Calculator) aimed at simplifying the determination of principal coefficients of thermal expansion and compressibilities from variable-temperature and variable-pressure lattice parameter data . In a series of three case studies, we use PASCal to re-analyse previously-published lattice parameter data and show that additional scientific insight is obtainable in each case. First, the two-dimensional metal-organic framework Cu-SIP-3 is found to exhibit the strongest area-negative thermal expansion (NTE) effect yet observed; second, the widely-used explosive HMX exhibits much stronger mechanical anisotropy than had previously been anticipated, including uniaxial NTE driven by thermal changes in molecular conformation; and, third, the high-pressure form of the mineral malayaite is shown to exhibit a strong negative linear compressibility (NLC) effect that arises from correlated tilting of SnO6 and SiO4 coordination polyhedra.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا