ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 27 0 square degrees were mapped with an angular resolution of $1.3$. The map noise levels in the four regions are between 11 and 17 $mu$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200<ell<3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at $ell<9000$, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than $2.4$ $mu$K$^2$ at $ell = 3000$ at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of $150.7^circ pm 0.6^circ$ when smoothed with a $5$ Gaussian beam.
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping r egions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilo-pixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure t he beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty, to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final CMB survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T_U^{149} = 106.7 pm 2.2 K and T_U^{219} = 100.1 pm 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T_S^{149} = 137.3 pm 3.2 K and T_S^{219} = 137.3 pm 4.7 K.
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zeldovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsam ple of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a Profile Based Amplitude Analysis using a single filter at a fixed theta_500 = 5.9 angular scale. This new approach takes advantage of the Universal Pressure Profile (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding sigma_8 = 0.829 pm 0.024 and Omega_m = 0.292 pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain Sigma m_ u < 0.29 eV (95% C. L.).
We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 20 08 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zeldovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq. deg. area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for ~60 member galaxies on average per cluster. The dynamical masses M_200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c~12e14 Msun/h70 with a lower limit M_200c~6e14 Msun/h70, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y, the central Compton parameter y0, and the integrated Compton signal Y_200c, which we use to derive SZE-Mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (<~20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the 3-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ~50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations but given the current sample sizes these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا