ترغب بنشر مسار تعليمي؟ اضغط هنا

The light curve of 1SWASP J140747.93-394542.6, a $sim$16 Myr old star in the Sco-Cen OB association, underwent a complex series of deep eclipses that lasted 56 days, centered on April 2007. This light curve is interpreted as the transit of a giant ri ng system that is filling up a fraction of the Hill sphere of an unseen secondary companion, J1407b. We fit the light curve with a model of an azimuthally symmetric ring system, including spatial scales down to the temporal limit set by the stars diameter and relative velocity. The best ring model has 37 rings and extends out to a radius of 0.6 AU (90 million km), and the rings have an estimated total mass on the order of $100 M_{Moon}$. The ring system has one clearly defined gap at 0.4 AU (61 million km), which we hypothesize is being cleared out by a $< 0.8 M_{oplus}$ exosatellite orbiting around J1407b. This eclipse and model implies that we are seeing a circumplanetary disk undergoing a dynamic transition to an exosatellite-sculpted ring structure and is one of the first seen outside our Solar system.
Gliese 569B is a multiple brown dwarf system whose exact nature has been the subject of several investigations over the past few years. Interpretation has partially relied on infra-red photometry and spectroscopy of the resolved components of the sys tem. We present seeing limited Ks photometry over four nights, searching for variability in this young low mass substellar system. Our photometry is consistent with other reported photometry, and we report the tentative detection of several periodic signals consistent with rotational modulation due to spots on their surfaces. The five significant periods range from 2.90 hours to 12.8 hours with peak to peak variabilities from 28 mmag to 62 mmag in the Ks band. If both components are rotating with the shortest periods, then their rotation axes are not parallel with each other, and the rotation axis of the Bb component is not perpendicular to the Ba-Bb orbital plane. If Bb has one of the longer rotational periods, then the Bb rotation axis is consistent with being parallel to the orbital axis of the Ba-Bb system.
61 - Sascha P. Quanz 2011
Using the APP coronagraph of VLT/NACO we searched for planetary mass companions around HD115892 and HD172555 in the thermal infrared at 4 micron. Both objects harbor unusually luminous debris disks for their age and it has been suggested that small d ust grains were produced recently in transient events (e.g., a collision) in these systems. Such a collision of planetesimals or protoplanets could have been dynamically triggered by yet unseen companions. We did not detect any companions in our images but derived the following detection limits: For both objects we would have detected companions with apparent magnitudes between ~13.2-14.1 mag at angular separations between 0.4- 1.0 at the 5-sigma level. For HD115892 we were sensitive to companions with 12.1 mag even at 0.3. Using theoretical models these magnitudes are converted into mass limits. For HD115892 we would have detected objects with 10-15 M_Jup at angular separations between 0.4-1.0 (7-18 AU). At 0.3 (~5.5 AU) the detection limit was ~25 M_Jup. For HD172555 we reached detection limits between 2-3 M_Jup at separations between 0.5-1.0 (15-29 AU). At 0.4 (~11 AU) the detection limit was ~4 M_Jup. Despite the non-detections our data demonstrate the unprecedented contrast performance of NACO/APP in the thermal infrared at very small inner working angles and we show that our observations are mostly background limited at separation >0.5.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا