ترغب بنشر مسار تعليمي؟ اضغط هنا

We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules using a graph neural-network architecture based on features from low-cost approximated quantum operators in the symmetry-adapted atomic orbit al basis. The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms, and is shown to be transferable across chemical space due to the use of domain-specific features. The learning efficiency is improved by incorporating physically motivated constraints on the electronic structure through multi-task learning. The model outperforms existing methods on energy prediction tasks for the QM9 dataset and for molecular geometry optimizations on conformer datasets, at a computational cost that is thousand-fold or more reduced compared to conventional quantum-chemistry calculations (such as density functional theory) that offer similar accuracy.
We address the degree to which machine learning can be used to accurately and transferably predict post-Hartree-Fock correlation energies. Refined strategies for feature design and selection are presented, and the molecular-orbital-based machine lear ning (MOB-ML) method is applied to several test systems. Strikingly, for the MP2, CCSD, and CCSD(T) levels of theory, it is shown that the thermally accessible (350 K) potential energy surface for a single water molecule can be described to within 1 millihartree using a model that is trained from only a single reference calculation at a randomized geometry. To explore the breadth of chemical diversity that can be described, MOB-ML is also applied to a new dataset of thermalized (350 K) geometries of 7211 organic models with up to seven heavy atoms. In comparison with the previously reported $Delta$-ML method, MOB-ML is shown to reach chemical accuracy with three-fold fewer training geometries. Finally, a transferability test in which models trained for seven-heavy-atom systems are used to predict energies for thirteen-heavy-atom systems reveals that MOB-ML reaches chemical accuracy with 36-fold fewer training calculations than $Delta$-ML (140 versus 5000 training calculations).
The idea of using fragment embedding to circumvent the high computational scaling of accurate electronic structure methods while retaining high accuracy has been a long-standing goal for quantum chemists. Traditional fragment embedding methods mainly focus on systems composed of weakly correlated parts and are insufficient when division across chemical bonds is unavoidable. Recently, density matrix embedding theory (DMET) and other methods based on the Schmidt decomposition have emerged as a fresh approach to this problem. Despite their success on model systems, these methods can prove difficult for realistic systems because they rely on either a rigid, non-overlapping partition of the system or a specification of some special sites (i.e. `edge and `center sites), neither of which is well-defined in general for real molecules. In this work, we present a new Schmidt decomposition-based embedding scheme called Incremental Embedding that allows the combination of arbitrary overlapping fragments without the knowledge of edge sites. This method forms a convergent hierarchy in the sense that higher accuracy can be obtained by using fragments involving more sites. The computational scaling for the first few levels is lower than that of most correlated wave function methods. We present results for several small molecules in atom-centered Gaussian basis sets and demonstrate that Incremental Embedding converges quickly with fragment size and recovers most static correlation in small basis sets even when truncated at the second lowest level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا