ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximately half of the nearby E+A galaxies followed up with 21-cm observations have detectable HI emission. The optical spectra of these galaxies show strong post-starburst stellar populations but no optical emission lines implying star-formation is not ongoing despite the presence of significant gas reservoirs. We have obtained integral field spectroscopic follow up observations of the two brightest, and nearest, of the six E+A galaxies with HI 21-cm emission in the recent sample of Zwaan et al. (2013). In the central regions of both galaxies the observations are consistent with a post-starburst population with little emission. However, outside the central regions both galaxies have strong optical emission lines, with a clumpy or knot-like distribution, indicating ongoing star-formation. We conclude that in these two cases the presence of optical spectra lacking evidence for star-formation while a large gas mass is present can be explained by an aperture effect in selecting the nearby E+A galaxies using single-fibre spectroscopy that probes only the galaxy core.
We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data re veal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~1000 km/s. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا