ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the puzzling characteristics of the pseudogap phase of high-$T_c$ cuprates is the nodal-antinodal dichotomy. While the nodal quasiparticles have a Fermi liquid behaviour, the antinodal ones show non-Fermi liquid features and an associated pseu dogap. Angle-resolved photoemission spectroscopy and electronic Raman scattering are two valuable tools which have shown universal features which are rather material-independent, and presumably intrinsic to the pseudogap phase. The doping and temperature dependence of the Fermi arcs and the pseudogap observed by photoemission near the antinode correlates with the non-Fermi liquid behaviour observed by Raman for the B$_{1g}$ mode. In contrast, and similar to the nodal quasiparticles detected by photoemission, the Raman B$_{2g}$ mode shows Fermi liquid features. We show that these two experiments can be analysed, in the context of the $t$-$J$ model, by self-energy effects in the proximity to a d-wave flux-phase order instability. This approach supports a crossover origin for the pseudogap, and a scenario of two competing phases. The B$_{2g}$ mode shows, in an underdoped case, a depletion at intermediate energy which has attracted a renewed interest. We study this depletion and discuss its origin and relation with the pseudogap.
Hole doped cuprates show a superconducting critical temperature $T_c$ which follows an universal dome-shaped behavior as function of doping. It is believed that the origin of superconductivity in cuprates is entangled with the physics of the pseudoga p phase. An open discussion is whether the source of superconductivity is the same that causes the pseudogap properties. The $t$-$J$ model treated in large-N expansion shows $d$-wave superconductivity triggered by non-retarded interactions, and an instability of the paramagnetic state to a flux phase or $d$-wave charge density wave ($d$-CDW) state. In this paper we show that self-energy effects near $d$-CDW instability may lead to a dome-shaped behavior of $T_c$. In addition, it is also shown that these self-energy contributions may describe several properties observed in the pseudogap phase. In this picture, although fluctuations responsible for the pseudogap properties leads to a dome-shaped behavior, they are not involved in pairing which is mainly non-retarded.
140 - Andres Greco , Matias Bejas 2011
The pseudogap phase of high-$T_c$ cuprates is controversially attributed to preformed pairs or to a phase which coexists and competes with superconductivity. One of the challenges is to develop theoretical and experimental studies in order to disting uish between both proposals. Very recently, researchers at Stanford have reported [M. Hashimoto {it et al.}, Nat. Phys. {bf 6}, 414 (2010); R.-H. He {it et al.}, Science {bf 331}, 1579 (2011)] angle-resolved photoemission spectroscopy experiments on Pb-Bi2201 supporting the point of view that the pseudogap is distinct from superconductivity and associated to a spacial symmetry breaking without long-range order. In this paper we show that many features reported by these experiments can be described in the framework of the t-J model considering self-energy effects in the proximity to a d charge-density-wave instability.
At mean-field level the t-J model shows a phase diagram with close analogies to the phase diagram of hole doped cuprates. An order parameter associated with the flux or $d$ charge-density wave ($d$-CDW) phase competes and coexists with superconductiv ity at low doping showing characteristics identified with the observed pseudogap in underdoped cuprates. In addition, in the $d$-CDW state the Fermi surface is reconstructed toward pockets with low spectral weight in the outer part, resembling the arcs observed in angle-resolved photoemission spectroscopy experiments. However, the $d$-CDW requires broken translational symmetry, a fact that is not completely accepted. Including self-energy corrections beyond the mean, field we found that the self-energy can be written as two distinct contributions. One of these (called $Sigma_{flux}$) dominates at low energy and originates from the scattering between carriers and $d$-CDW fluctuations in proximity to the $d$-CDW instability. The second contribution (called $Sigma_{Rlambda}$) dominates at large energy and originates from the scattering between charge fluctuations under the constraint of non double occupancy. In this paper it is shown that $Sigma_{flux}$ is responsible for the origin of low-energy features in the spectral function as a pseudogap and Fermi arcs. The obtained doping and temperature dependence of the pseudogap and Fermi arcs is similar to that observed in experiments. At low energy, $Sigma_{R lambda}$ gives an additional contribution to the closure of the pseudogap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا