ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent observations of binary systems obtained with the H.E.S.S. telescopes are providing crucial information on the physics of relativistic outflows and the engines powering them. We report here on new H.E.S.S. results on HESS J0632+057, PSR B1259-6 3/LS 2883, Eta Carinae and the recently discovered source HESS J1018-589. Despite the high-quality data obtained in the last years through both ground and space-based gamma-ray detectors, many questions on the mechanisms that permit binary systems to emit at gamma-rays remain open. In particular, it is becoming apparent that emission at high and very-high energies is uncorrelated in some gamma-ray binary systems, with bright GeV flares not observed at TeV energies (e.g. PSR B1259-63), and sources periodically detected at VHEs which are lacking its HE counterpart (e.g. HESS J0632+057). Our results mainly confirm the predictions derived previously for the studied sources, but unexpected results are also found in a few cases, which are discussed in the context of contemporaneous observations at lower energies.
The W49 region hosts two bright radio sources: the star forming region W49A and the supernova remnant W49B. The 10^6 M_odot Giant Molecular Cloud W49A is one of the most luminous giant radio HII regions in our Galaxy and hosts several active, high-ma ss star formation sites. The mixed-morphology supernova remnant W49B has one of the highest surface brightness in radio of all the SNRs of this class in our Galaxy and is one of the brightest ejecta-dominated SNRs in X-rays. Infrared observations evidenced that W49B is interacting with molecular clouds and Fermi recently reported the detection of a coincident bright, high-energy gamma-ray source. Observations by the H.E.S.S. telescope array resulted in the significant detection of VHE gamma-ray emission from the W49 region, compatible with VHE emission from the SNR W49B. The results, the morphology and the origin of the VHE emission are presented in the multi-wavelength context and the implications on the origin of the signal are discussed.
The H.E.S.S. experiment is an array of four imaging Cherenkov telescopes located in the Khomas Highlands of Namibia. It has been operating in its full configuration since December 2003 and detects very-high-energy (VHE) gamma rays ranging from 100 Ge V to 50 TeV. Since 2004, the continuous observation of the Galactic Plane by the H.E.S.S. array of telescopes has yielded the discovery of more than 50 sources, belonging to the classes of pulsar wind nebulae (PWN), supernova remnants (SNR), gamma ray binaries and, more recently, a stellar cluster and molecular clouds in the vicinity of shell-type SNRs. Galactic emission seen by H.E.S.S. and its implications for particle acceleration in our Galaxy are discussed.
We present a sophisticated gamma-ray likelihood reconstruction technique for Imaging Atmospheric Cerenkov Telescopes. The technique is based on the comparison of the raw Cherenkov camera pixel images of a photon induced atmospheric particle shower wi th the predictions from a semi-analytical model. The approach was initiated by the CAT experiment in the 1990s, and has been further developed by a new fit algorithm based on a log-likelihood minimisation using all pixels in the camera, a precise treatment of night sky background noise, the use of stereoscopy and the introduction of first interaction depth as parameter of the model. The reconstruction technique provides a more precise direction and energy reconstruction of the photon induced shower compared to other techniques in use, together with a better gamma efficiency, especially at low energies, as well as an improved background rejection. For data taken with the H.E.S.S. experiment, the reconstruction technique yielded a factor of ~2 better sensitivity compared to the H.E.S.S. standard reconstruction techniques based on second moments of the camera images (Hillas Parameter technique).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا