ترغب بنشر مسار تعليمي؟ اضغط هنا

Examination of loading the isotopes $^{85}$Rb and $^{87}$Rb simultaneously into a shallow far-off-resonance trap (FORT) has revealed an unexpected decrease in maximum atom number loaded as compared to loading either isotope alone. The simultaneous lo ading of the FORT will be affected by additional homonuclear and heteronuclear light-assisted collisional losses. However, these losses are measured and found to be insufficient to explain the observed drop in total number of atoms loaded into the FORT. We find that our observations are consistent with a decrease in loading rate caused by inter-isotope disruptions of the efficient laser cooling required to load atoms into the optical trap.
We have studied the effects of loading $^{87}$Rb into a far off resonant trap (FORT) in the presence of an ultracold cloud of $^{85}$Rb. The presence of the $^{85}$Rb resulted in a marked decrease of the $^{87}$Rb load rate. This decrease is consiste nt with a decrease in the laser cooling efficiency needed for effective loading. While many dynamics which disrupt loading efficency arise when cooling in a dense cloud of atoms (reabsorption, adverse optical pumping, etc.), the large detuning between the transitions of $^{85}$Rb and $^{87}$Rb should isolate the isotopes from these effects. For our optical molasses conditions we calculate that our cooling efficiencies require induced ground-state coherences. We present data and estimates which are consistent with heteronuclear long-ranged induced dipole-dipole collisions disrupting these ground state coherences, leading to a loss of optical trap loading efficiency.
We have examined loading of 85Rb atoms into a shallow Far-Off-Resonance Trap (FORT) from an optical molasses and compared it to loading from a Magneto-Optical Trap (MOT). We found that substantially more atoms could be loaded into the FORT via an opt ical molasses as compared to loading from the MOT alone. To determine why this was the case, we measured the rate of atoms loaded into the FORT and the losses from the FORT during the loading process. For both MOT and molasses loading, we examined atom load rate and losses over a range of detunings as well as hyperfine pump powers. We found that the losses induced during MOT loading were essentially the same as the losses induced during molasses loading at the same MOT/molasses detuning. In contrast, load rate of the molasses was higher than that of a MOT at a given detuning. This caused the optical molasses to be able to load more atoms than the MOT. Optimization of FORT loading form an optical molasses improved the number of atoms we could trap by a factor of two over that of optimal loading from a MOT.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا