ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative effi ciencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by Particle-in-Cell (PIC) simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the ERC (External-Radiation-Compton) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices about 0. This is inconsistent with the observed 2-10 keV slopes of blazars, which cluster around an index value of 0.6. This problem can be resolved by assuming that electrons can be cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the SSC (Synchrotron-Self Compton) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances larger than 10 parsecs. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see gamma-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of electron-positron pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario requires sensitive observations in the hard X-ray band which is now possible with the NuSTAR satellite.
Blazars are strongly variable sources that occasionally show spectacular flares visible in various energy bands. These flares are often, but not always, correlated. In a number of cases the peaks of optical flares are found to be somewhat delayed wit h respect to the gamma-ray peaks. One notable example of such a delay was found in 3C 279 by Hayashida et al. and interpreted as a result of steeper drop with distance of the energy density of external radiation field than of the magnetic energy density. In this paper we demonstrate that in general, depending on the respective energy density profile along the jet, such lags can have both signs and that they can take place for any ratio of these energy densities. We study the dependence of such lags on the ratio of these energy densities at a distance of a maximal energy dissipation in a jet, on their gradients, as well as on the time profile of the relativistic electron injection within the moving source. We show how prominent such lags can be, and what are their expected time scales. We suggest that studies of such lags can provide a powerful tool to resolve the structure of relativistic jets and their radiative environment. As an example we model the lag observed in 3C 279, showing that in this object the flare is produced at a distance of a few parsecs from the central black hole, consistent with our previous inferences based on the spectra and optical polarization properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا