ترغب بنشر مسار تعليمي؟ اضغط هنا

The brightness temperature of the radio free-free emission at millimeter range is an effective tool for characterizing the vertical structure of the solar chromosphere. In this paper, we report on the first single-dish observation of a sunspot at 85 and 115 GHz with sufficient spatial resolution for resolving the sunspot umbra using the Nobeyama 45 m telescope. We used radio attenuation material, i.e. a solar filter, to prevent the saturation of the receivers. Considering the contamination from the plage by the side-lobes, we found that the brightness temperature of the umbra should be lower than that of the quiet region. This result is inconsistent with the preexisting atmospheric models. We also found that the brightness temperature distribution at millimeter range strongly corresponds to the ultraviolet (UV) continuum emission at 1700 {AA}, especially at the quiet region.
Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amount of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point); with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point. Additionally, the plasma around the X-point was also thermally heated up to 10 MK. The estimated reconnection rate of this event is ~0.017.
53 - Masumi Shimojo 2013
The solar activity in Cycle 23--24 shows differences from the previous cycles that were observed with modern instruments, e.g. long cycle duration and a small number of sunspots. To appreciate the anomalies further, we investigated the prominence eru ptions and disappearances observed with the Nobeyama Radioheliograph during over 20 years. Consequently, we found that the occurrence of the prominence activities in the northern hemisphere is normal because the period of the number variation is 11 years and the migration of the producing region of the prominence activities traces the migration of 11 years ago. On the other hand, the migration in the southern hemisphere significantly differs from that in the northern hemisphere and the previous cycles. The prominence activities occurred over -50 degrees latitude in spite of the late decay phase of Cycle 23, and the number of the prominence activities in the higher latitude region (over -65 degrees) is very small even near the solar maximum of Cycle 24. The results suggest that the anomalies of the global magnetic field distribution started at the solar maximum of Cycle 23. Comparison of the butterfly diagram of the prominence activities with the magnetic butterfly diagram indicates that the timing of the rush to the pole and the polar magnetic field closely relates to the unusual migration. Considering that the rush to the pole is made of the sunspots, the hemispheric asymmetry of the sunspots and the strength of the polar magnetic fields are essential for understanding the anomalies of the prominence activities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا