ترغب بنشر مسار تعليمي؟ اضغط هنا

We argue that the pattern of the deviation from the Glauber approximation prediction for the centrality dependence of the rate of forward jet production observed in pA collisions at the LHC provides the first experimental evidence that parton configu rations in the projectile proton containing a parton with large $x$ interact with a nuclear target with a significantly smaller than average cross section and have smaller than average size. We implement the effects of fluctuations of the interaction strength and, using the ATLAS analysis of how hadron production at backward rapidities depends on the number of wounded nucleons, make quantitative predictions for the centrality dependence of the jet production rate as a function of the $x$-dependent interaction strength $sigma(x)$. We find that sigma(x)sim 0.6 ~sigma_{tot}(pp) gives a good description of the x=0.6 data and may shed a light on the origin of the EMC effect.
By analyzing recent microscopic many-body calculations of few-nucleon systems and complex nuclei performed by different groups in terms of realistic nucleon-nucleon (NN) interactions, it is shown that NN short-range correlations (SRCs) have a univers al character, in that the correlation hole that they produce in nuclei appears to be almost A-independent and similar to the correlation hole in the deuteron. The correlation hole creates high-momentum components, missing in a mean-field (MF) description and exhibiting several scaling properties and a peculiar spin-isospin structure. In particular, the momentum distribution of a pair of nucleons in spin-isospin state $(ST)=(10)$, depending upon the pair relative ($k_{rel}$) and center-of-mass (c.m.) ($K_{c.m.}$) momenta, as well as upon the angle $Theta$ between them, exhibits a remarkable property: in the region $k_{rel}gtrsim 2,fm^{-1}$ and $K_{c.m.}lesssim 1,fm^{-1} $, the relative and c.m. motions are decoupled and the two-nucleon momentum distribution factorizes into the deuteron momentum distribution and an A-dependent momentum distribution describing the c.m. motion of the pair in the medium. The impact of these and other properties of one- and two-nucleon momentum distributions on various nuclear phenomena, on ab initio calculations in terms of low-momentum interactions, as well as on ongoing experimental investigations of SRCs, are briefly commented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا