ترغب بنشر مسار تعليمي؟ اضغط هنا

FeSe film is successfully fabricated onto Rolling Assisted Biaxially Textured Substrate (RABiTS) tapes by an electrochemical deposition technique. The deposited FeSe films tend to become high crystallinity with a decrease in the applied voltage to -1 .0 V, and the compositional ratio of Fe to Se approaches 1:1. The sample deposited at -1.0 V shows a superconducting transition approximately 8.0 K in the magnetic susceptibility.
Single crystals of La(O,F)BiSSe were successfully grown by a CsCl flux method. Single crystal X-ray structural analysis revealed that the crystal structure is isostructural with BiS$_2$- or BiSe$_2$-based compounds with space group $P4/nmm$ (lattice parameters $a$ = 4.1110(2) {AA}, $c$ = 13.6010(7) {AA}). However, the S atoms are selectively occupied at the apical site of the Bi-SSe pyramids in the superconducting layer. The single crystals show a superconducting transition at 4.2 K in the magnetic susceptibility and resistivity measurement. The superconducting anisotropic parameter is determined to be 34 from its upper critical magnetic field. The anisotropy is in the same range with that of other members of the La(O,F)BiCh$_2$ ($Ch$ = S, Se) family under ambient pressure.
We have demonstrated a pressure-induced phase transition from a low-Tc phase to a high-Tc phase in a single crystal of the superconductor LaO0.5F0.5BiSe2. The high-Tc phase appears at 2.16 GPa and the maximum superconducting transition temperature (T c) is observed at 6.7 K under 2.44 GPa. Although the anisotropy ({gamma}) for the low-Tc phase is estimated to be 20, it is reduced by around half (9.3) in the high-Tc phase. This tendency is the same for the BiS2 system. The Tc of LaO0.5F0.5BiSe2 has continued to increase up to the maximum pressure of this study (2.44 GPa). Therefore applied further pressure has the potential to induce a much higher Tc in this system.
Superconductivity in FeTe0.8S0.2 is successfully induced by an electrochemical reaction using an ionic liquid solution. A clear correlation between the Fe concentration in the solution and the manifestation of superconductivity was confirmed, suggest ing that superconductivity was induced by the deintercalation of excess iron.
F-substituted LaOBiSe2 single crystals were grown using CsCl flux. The obtained single crystals showed a plate-like shape with a size of about 1.0 mm square. The c-axis lattice constant of the grown crystals was determined to be 14.114(3) {AA}. The s uperconducting critical temperature of the single crystal was approximately 3.5 K. The superconducting anisotropies were determined to be 49 and 24 using the upper critical field and the effective mass model, respectively.
Superconductivity is successfully induced by utilizing a battery-like reaction found in a typical Li-ion battery. Excess Fe in FeTe0.8S0.2 is electrochemically de-intercalated by applying a voltage in a citric acid solution. The superconducting prope rties improve with an increase in the applied voltage up to 1.5 V. This result suggests that an electrochemical reaction can be used as a novel method to develop new superconducting materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا