ترغب بنشر مسار تعليمي؟ اضغط هنا

Using star-forming galaxies sample in the nearby Universe (0.02<z<0.10) selected from the SDSS (DR7) and GALEX all-sky survey (GR5), we present a new empirical calibration for predicting dust extinction of galaxies from H-alpha-to-FUV flux ratio. We find that the H-alpha dust extinction (A(Ha)) derived with H-alpha/H-beta ratio (Balmer decrement) increases with increasing H-alpha/UV ratio as expected, but there remains a considerable scatter around the relation, which is largely dependent on stellar mass and/or H-alpha equivalent width (EW(Ha)). At fixed H-alpha/UV ratio, galaxies with higher stellar mass (or galaxies with lower EW(Ha)) tend to be more highly obscured by dust. We quantify this trend and establish an empirical calibration for predicting A(Ha) with a combination of H-alpha/UV ratio, stellar mass and EW(Ha), with which we can successfully reduce the systematic uncertainties accompanying the simple H-alpha/UV approach by ~15-30%. The new recipes proposed in this study will provide a convenient tool for predicting dust extinction level of galaxies particularly when Balmer decrement is not available. By comparing A(Ha) (derived with Balmer decrement) and A(UV) (derived with IR/UV luminosity ratio) for a subsample of galaxies for which AKARI FIR photometry is available, we demonstrate that more massive galaxies tend to have higher extra extinction towards the nebular regions compared to the stellar continuum light. Considering recent studies reporting smaller extra extinction towards nebular regions for high-redshift galaxies, we argue that the dust geometry within high-redshift galaxies resemble more like low-mass galaxies in the nearby Universe.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We detect H$alpha$ emission line in 115 galaxies, [OIII]$lambda$5007 emission line in 45 galaxies, and H$beta$, [NII]$lambda$6584, and [SII]$lambdalambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $zsim$1.5. We find a tight correlation between H$alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $zsim1.5$. The line ratios of H$alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
We present a novel method to estimate accurate redshifts of star-forming galaxies by measuring the flux ratio of the same emission line observed through two adjacent narrow-band filters. We apply this method to our NB912 and new NB921 data taken with Suprime-Cam on the Subaru Telescope of a galaxy cluster, XMMXCS J2215.9-1738, at z=1.46 and its surrounding structures. We obtain redshifts for 170 [OII] emission line galaxies at z~1.46, among which 41 galaxies are spectroscopically confirmed with MOIRCS and FMOS on the Subaru mainly, showing an accuracy of $sigma$((z-z_spec})/(1+z_spec))=0.002. This allows us to reveal filamentary structures that penetrate towards the centre of the galaxy cluster and intersect with other structures, consistent with the picture of hierarchical cluster formation. We also find that the projected celestial distribution does not precisely trace the real distribution of galaxies, indicating the importance of the three dimensional view of structures to properly identify and quantify galaxy environments. We investigate the environmental dependence of galaxy properties with local density, confirming that the median colour of galaxies becomes redder in higher density region while the star-formation rate of star-forming galaxies does not depend strongly on local environment in this structure. This implies that the star-forming activity in galaxies is truncated on a relatively short time scale in the cluster centre.
We present an unbiased deep [OII] emission survey of a cluster XMMXCS J2215.9-1738 at z=1.46, the most distant cluster to date with a detection of extended X-ray emission. With wide-field optical and near-infrared cameras (Suprime-Cam and MOIRCS, res pectively) on Subaru telescope, we performed deep imaging with a narrow-band filter NB912 (lambda_c=9139A, Delta_lambda=134A) as well as broad-band filters (B, z, J and Ks). From the photometric catalogues, we have identified 44 [OII] emitters in the cluster central region of 6x6 down to a dust-free star formation rate of 2.6 Msun/yr (3 sigma). Interestingly, it is found that there are many [OII] emitters even in the central high density region. In fact, the fraction of [OII] emitters to the cluster members as well as their star formation rates and equivalent widths stay almost constant with decreasing cluster-centric distance up to the cluster core. Unlike clusters at lower redshifts (z<1) where star formation activity is mostly quenched in their central regions, this higher redshift 2215 cluster shows its high star formation activity even at its centre, suggesting that we are beginning to enter the formation epoch of some galaxies in the cluster core eventually. Moreover, we find a deficit of galaxies on the red sequence at magnitudes fainter than ~M*+0.5 on the colour-magnitude diagram. This break magnitude is brighter than that of lower redshift clusters, and it is likely that we are seeing the formation phase of more massive red galaxies in the cluster core at z~1. These results may indicate inside-out and down-sizing propagation of star formation activity in the course of cluster evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا