ترغب بنشر مسار تعليمي؟ اضغط هنا

116 - Masamichi Miyaji 2021
We consider spacetime initiated by a finite-sized boundary on which a pure initial matter state is set as a natural generalization of the Hartle-Hawking no-boundary state. We study entanglement entropy of the gravitationally prepared matter state at the final time slice. We find that the entropy of the initial state or the entanglement island gives the entropy for large subregions on the final time slice. Consequently, we find the entanglement entropy is bounded from above by the boundary area of the island, leading to an entropy bound in terms of the island formula. The island $I$ appears in the analytically continued spacetime, either at the bra or the ket part of the spacetime in Schwinger-Keldysh formalism, and the entropy is given by an average of pseudo entropy of each entanglement island. We find a necessary condition of the initial state to be consistent with the strong sub-additivity. The condition requires that any probe degrees of freedom are thermally entangled with the rest of the system. We then study which initial condition leads to our finite-sized initial boundary or the Hartle-Hawking no-boundary state. Due to the absence of a moment of time reflection symmetry, the island in our setup requires a generalization of the entanglement wedge, which we call {it{pseudo entanglement wedge}}. In pseudo entanglement wedge reconstruction, we consider reconstructing the bulk matter transition matrix on $Acup I$, from a fine-grained state on $A$. The bulk transition matrix is given by a thermofield double state with a projection by the initial state. We provide an AdS/BCFT model, which provides a double holography model of our setup by considering EOW branes with corners. We also find the exponential hardness of such reconstruction task using a generalization of Pythons lunch conjecture to pseudo generalized entropy.
We study overlaps between two regularized boundary states in conformal field theories. Regularized boundary states are dual to end of the world branes in an AdS black hole via the AdS/BCFT. Thus they can be regarded as microstates of a single sided b lack hole. Owing to the open-closed duality, such an overlap between two different regularized boundary states is exponentially suppressed as $langle psi_{a} | psi_{b} rangle sim e^{-O(h^{(min)}_{ab})}$, where $h^{(min)}_{ab}$ is the lowest energy of open strings which connect two different boundaries $a$ and $b$. Our gravity dual analysis leads to $h^{(min)}_{ab} = c/24$ for a pure AdS$_3$ gravity. This shows that a holographic boundary state is a random vector among all left-right symmetric states, whose number is given by a square root of the number of all black hole microstates. We also perform a similar computation in higher dimensions, and find that $h^{( min)}_{ab}$ depends on the tensions of the branes. In our analysis of holographic boundary states, the off diagonal elements of the inner products can be computed directly from on-shell gravity actions, as opposed to earlier calculations of inner products of microstates in two dimensional gravity.
Recent work has demonstrated the need to include contributions from entanglement islands when computing the entanglement entropy in QFT states coupled to regions of semiclassical gravity. We propose a new formula for the reflected entropy that includ es additional contributions from such islands. We derive this formula from the gravitational path integral by finding additional saddles that include generalized replica wormholes. We also demonstrate that our covariant formula satisfies all the inequalities required of the reflected entropy. We use this formula in various examples that demonstrate its relevance in illustrating the structure of multipartite entanglement that are invisible to the entropies.
We study entanglement entropy after a double local quench in two-dimensional conformal field theories (CFTs), with any central charge $c>1$. In the holographic CFT, such a state with double-excitation is dual to an AdS space with two massive particle s introduced from the boundary. We show that the growth after the double local excitations cannot be given by the sum of two local quenches but with an additional negative term. This negative contribution can be naturally interpreted as due to the attractive force of gravity. In CFT side, this evaluation of the entanglement entropy is accomplished by a special limit of 6-point functions, where we employed the fusion matrix approach for multi-point conformal blocks developed in arXiv:1905.02191.
We explore the structures of light cone and Regge limit singularities of $n$-point Virasoro conformal blocks in $c>1$ two-dimensional conformal field theories with no chiral primaries, using fusion matrix approach. These CFTs include not only hologra phic CFTs dual to classical gravity, but also their full quantum corrections, since this approach allows us to explore full $1/c$ corrections. As the important applications, we study time dependence of Renyi entropy after a local quench and out-of-time ordered correlator (OTOC) at late time. We first show that, the $n$-th ($n>2$) Renyi entropy after a local quench in our CFT grows logarithmically at late time, for any $c$ and any conformal dimensions of excited primary. In particular, we find that this behavior is independent of $c$, contrary to the expectation that the finite $c$ correction fixes the late time Renyi entropy to be constant. We also show that the constant part of the late time Renyi entropy is given by a monodromy matrix. We also investigate OTOCs by using the monodromy matrix. We first rewrite the monodromy matrix in terms of fusion matrix explicitly. By this expression, we find that the OTOC decays exponentially in time, and the decay rates are divided into three patterns, depending on the dimensions of external operators. We note that our result is valid for any $c>1$ and any external operator dimensions. Our monodromy matrix approach can be generalized to the Liouville theory and we show that the Liouville OTOC approaches constant in the late time regime. We emphasize that, there is a number of other applications of the fusion and the monodromy matrix approaches, such as solving the conformal bootstrap equation. Therefore, it is tempting to believe that the fusion and monodromy matrix approaches provide a key to understanding the AdS/CFT correspondence.
We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.
75 - Masamichi Miyaji 2018
In this paper, we consider double trace deformation to single CFT${}_2$, and study time evolution after the deformation. The double trace deformation we consider is nonlocal: composed of two local operators placed at separate points. We study two typ es of local operators: one is usual local operator in CFT, and the other is HKLL bulk local operator, which is still operator in CFT but has properties as bulk local operator. We compute null energy and averaged null energy in the bulk in both types of deformations. We confirmed that, with the suitable choice of couplings, averaged null energies are negative. This implies causal structure is modified in the bulk, from classical background. We then calculate time evolution of entanglement entropy and entanglement Renyi entropy after double trace deformation. We find both quantities are found to show peculiar shockwave-like time evolution.
We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational compl exity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.
We introduce a new optimization procedure for Euclidean path integrals which compute wave functionals in conformal field theories (CFTs). We optimize the background metric in the space on which the path integration is performed. Equivalently this is interpreted as a position-dependent UV cutoff. For two-dimensional CFT vacua, we find the optimized metric is given by that of a hyperbolic space and we interpret this as a continuous limit of the conjectured relation between tensor networks and Anti--de Sitter (AdS)/conformal field theory (CFT) correspondence. We confirm our procedure for excited states, the thermofield double state, the Sachdev-Ye-Kitaev model and discuss its extension to higher-dimensional CFTs. We also show that when applied to reduced density matrices, it reproduces entanglement wedges and holographic entanglement entropy. We suggest that our optimization prescription is analogous to the estimation of computational complexity.
In this paper, we discuss tensor network descriptions of AdS/CFT from two different viewpoints. First, we start with an Euclidean path-integral computation of ground state wave functions with a UV cut off. We consider its efficient optimization by ma king its UV cut off position dependent and define a quantum state at each length scale. We conjecture that this path-integral corresponds to a time slice of AdS. Next, we derive a flow of quantum states by rewriting the action of Killing vectors of AdS3 in terms of the dual 2d CFT. Both approaches support a correspondence between the hyperbolic time slice H2 in AdS3 and a version of continuous MERA (cMERA). We also give a heuristic argument why we can expect a sub-AdS scale bulk locality for holographic CFTs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا