ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed $^{59}$Co nuclear magnetic and quadrupole resonance (NMR and NQR) measurements under pressure on a single-crystalline CeCoSi, which undergoes an unresolved phase transition at $T_0$. The NQR spectra clearly showed that the phase transiti on at $T_0$ is nonmagnetic, but any symmetry lowering at the Co site was not seen irrespective of the feature of second-order phase transition. By contrast, the NMR spectra were split by the induced magnetic field perpendicular to the external magnetic field. These results show that the phase below $T_0$ is not a simple paramagnetic state but is most likely electric multipolar ordered state of Ce $4f$ electrons. The development of the Kondo effect by applying pressure is thought to be crucial to stabilize this state and to show novel features beyond commonality of tetragonal Ce-based systems.
We conducted$^{195}$Pt-nuclear magnetic resonance measurements on various-diameter Pt nanoparticles coated with polyvinylpyrrolidone in order to detect the quantum size effect and the discrete energy levels in the electron density of states, both of which were predicted by Kubo more than 50 years ago. We succeeded in separating the signals arising from the surface and interior regions and found that the nuclear spin-lattice relaxation rates in both regions show the metallic behavior at high temperatures. Surprisingly, the magnetic fluctuations in both regions exhibited anomalous behavior below the same temperature $T^*$, which points to a clear size dependence and is well scaled with $delta_mathrm{Kubo}$. These results suggest that a size-tunable metal-insulator transition occurs in the Pt nanoparticles as a result of the Kubo effect.
We present nuclear spin-lattice relaxation rate (1/T1) at the Co site and ac-susceptibility results in the normal and superconducting (SC) states of CeCoIn5 for H || c near the SC upper critical field Hc2 above 0.1 K. At 4.2 T, 1/T1 rapidly decreases below the SC transition temperature, consistent with the previous reports. Although the field dependence of 1/T1T at 0.1 K shows a peak at 5.2 T above Hc2, the temperature dependence of 1/T1T at 5.2 T is independent of temperature below 0.2 K, showing a Fermi-liquid behavior. In addition, we found no NMR-spectrum broadening by the appearance of internal fields around Hc2 at 0.1 K. We could not detect any field-induced magnetic instability around Hc2 down to 0.1 K although the remarkable non-Fermi-liquid behavior towards Hc2 was observed in various physical quantities.
The phase separation of the ferromagnetic (FM) and paramagnetic (PM) phases in the superconducting (SC) state of UCoGe at the FM critical region was investigated using $^{59}$Co nuclear quadrupole resonance (NQR) technique by taking advantage of its site-selective feature. The NQR measurements revealed that the first-order quantum phase transition occurs between the FM and the PM states. The nuclear spin-lattice relaxation rate $1/T_1$ exhibited a clear drop at the SC state in the PM phase, whereas it was not detected in the FM phase, which indicates that the superconductivity in the FM phase becomes weaker at the FM critical region due to the presence of the PM SC state. This result suggests that the SC condensation energy of the PM SC state is equal or larger than that of the FM SC state in this region. The pressure-temperature phase diagram of UCoGe was modified by taking the results from this study into account.
A $^{59}$Co nuclear magnetic resonance (NMR) measurement was performed on the single-crystalline ferromagnetic (FM) superconductor UCoGe under a pressure of 1.09 GPa, where the FM state is suppressed and superconductivity occurs in the paramagnetic ( PM) state, to study the superconducting (SC) state in the PMstate. $^{59}$Co-NMR spectra became broader but hardly shifted across the SC transition temperature. The Knight-shift change determined from fitting the spectral peak with a Gaussian was much smaller than the spin part of the Knight shift; this is in good agreement with the spin-triplet pairing suggested from the large upper critical field. The spectrum broadening in the SC state cannot be attributed to the SC diamagnetic effect but is related to the properties of spin-triplet superconductivity. The origins of the broadening are discussed herein.
A $^{59}$Co nuclear quadrupole resonance (NQR) was performed on a single-crystalline ferromagnetic (FM) superconductor UCoGe under pressure. The FM phase vanished at a critical pressure $P_c$, and the NQR spectrum just below $P_c$ showed phase separa tion of the FM and paramagnetic (PM) phases below Curie temperature $T_{textrm{Curie}}$, suggesting first-order FM quantum phase transition (QPT). We found that the internal field was absent above $P_c$, but the superconductivity is almost unchanged. This result suggests the existence of the nonunitary to unitary transition of the superconductivity around $P_c$. Nuclear spin-lattice relaxation rate $1/T_1$ showed the FM critical fluctuations around $P_c$, which persist above $P_c$ and are clearly related to superconductivity in the PM phase. This FM QPT is understood to be a weak first order with critical fluctuations. $1/T_1$ sharply decreased in the superconducting (SC) state above $P_c$ with a single component, in contrast to the two-component $1/T_1$ in the FM SC state, indicating that the inhomogeneous SC state is a characteristic feature of the FM SC state in UCoGe.
We have performed $^{27}$Al-NMR measurements on single-crystalline UPd$_2$Al$_3$ with the field parallel to the $c$ axis to investigate the superconducting (SC) properties near the upper critical field of superconductivity $H_{rm c2}$. The broadening of the NMR linewidth below 14~K indicates the appearance of the internal field at the Al site, which originates from the antiferromagnetically ordered moments of U 5$f$ electrons. In the SC state well below $mu_0H_{rm c2}$ = 3.4~T, the broadening of the NMR linewidth due to the SC diamagnetism and a decrease in the Knight shift are observed, which are well-understood by the framework of spin-singlet superconductivity. In contrast, the Knight shift does not change below $T_{rm c}(H)$, and the NMR spectrum is broadened symmetrically in the SC state in the field range of 3~T $< mu_0 H < mu_0 H_{rm c2}$. The unusual NMR spectrum near $H_{rm c2}$ suggests that a spatially inhomogeneous SC state such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state would be realized.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا