ترغب بنشر مسار تعليمي؟ اضغط هنا

We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e. a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution STM image s reveal the presence of a strong spatially dependent perturbation, which breaks the hexagonal lattice symmetry of the graphitic lattice. Structural corrugations of the graphene sheet partially conform to the underlying silicon oxide substrate. These effects are obscured or modified on graphene devices processed with normal lithographic methods, as they are covered with a layer of photoresist residue. We enable our experiments by a novel cleaning process to produce atomically-clean graphene sheets.
we have fabricated transparent electronic devices based on graphene materials with thickness down to one single atomic layer by the transfer printing method. The resulting printed graphene devices retain high field effect mobility and have low contac t resistance. The results show that the transfer printing method is capable of high-quality transfer of graphene materials from silicon dioxide substrates, and the method thus will have wide applications in manipulating and delivering graphene materials to desired substrate and device geometries. Since the method is purely additive, it exposes graphene (or other functional materials) to no chemical preparation or lithographic steps, providing greater experimental control over device environment for reproducibility and for studies of fundamental transport mechanisms. Finally, the transport properties of the graphene devices on the PET substrate demonstrate the non-universality of minimum conductivity and the incompleteness of the current transport theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا