ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining two classical notions in extremal combinatorics, the study of Ramsey-Turan theory seeks to determine, for integers $mle n$ and $p leq q$, the number $mathsf{RT}_p(n,K_q,m)$, which is the maximum size of an $n$-vertex $K_q$-free graph in whi ch every set of at least $m$ vertices contains a $K_p$. Two major open problems in this area from the 80s ask: (1) whether the asymptotic extremal structure for the general case exhibits certain periodic behaviour, resembling that of the special case when $p=2$; (2) constructing analogues of Bollobas-ErdH{o}s graphs with densities other than $1/2$. We refute the first conjecture by witnessing asymptotic extremal structures that are drastically different from the $p=2$ case, and address the second problem by constructing Bollobas-ErdH{o}s-type graphs using high dimensional complex spheres with all rational densities. Some matching upper bounds are also provided.
We present a sufficient condition for the stability property of extremal graph problems that can be solved via Zykovs symmetrisation. Our criterion is stated in terms of an analytic limit version of the problem. We show that, for example, it applies to the inducibility problem for an arbitrary complete bipartite graph $B$, which asks for the maximum number of induced copies of $B$ in an $n$-vertex graph, and to the inducibility problem for $K_{2,1,1,1}$ and $K_{3,1,1}$, the only complete partite graphs on at most five vertices for which the problem was previously open.
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Let $f(n,r)$ denote the maximum number of colourings of $A subseteq lbrace 1,ldots,nrbrace$ with $r$ colours such that each colour class is sum-free. Here, a sum is a subset $lbrace x,y,zrbrace$ such that $x+y=z$. We show that $f(n,2) = 2^{lceil n/2r ceil}$, and describe the extremal subsets. Further, using linear optimisation, we asymptotically determine the logarithm of $f(n,r)$ for $r leq 5$. Similar results were obtained by H`an and Jimenez in the setting of finite abelian groups.
For a sequence $(H_i)_{i=1}^k$ of graphs, let $textrm{nim}(n;H_1,ldots, H_k)$ denote the maximum number of edges not contained in any monochromatic copy of $H_i$ in colour $i$, for any colour $i$, over all $k$-edge-colourings of~$K_n$. When each $H _i$ is connected and non-bipartite, we introduce a variant of Ramsey number that determines the limit of $textrm{nim}(n;H_1,ldots, H_k)/{nchoose 2}$ as $ntoinfty$ and prove the corresponding stability result. Furthermore, if each $H_i$ is what we call emph{homomorphism-critical} (in particular if each $H_i$ is a clique), then we determine $textrm{nim}(n;H_1,ldots, H_k)$ exactly for all sufficiently large~$n$. The special case $textrm{nim}(n;K_3,K_3,K_3)$ of our result answers a question of Ma. For bipartite graphs, we mainly concentrate on the two-colour symmetric case (i.e., when $k=2$ and $H_1=H_2$). It is trivial to see that $textrm{nim}(n;H,H)$ is at least $textrm{ex}(n,H)$, the maximum size of an $H$-free graph on $n$ vertices. Keevash and Sudakov showed that equality holds if $H$ is the $4$-cycle and $n$ is large; recently Ma extended their result to an infinite family of bipartite graphs. We provide a larger family of bipartite graphs for which $textrm{nim}(n;H,H)=textrm{ex}(n,H)$. For a general bipartite graph $H$, we show that $textrm{nim}(n;H,H)$ is always within a constant additive error from $textrm{ex}(n,H)$, i.e.,~$textrm{nim}(n;H,H)= textrm{ex}(n,H)+O_H(1)$.
Komlos conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conj ecture when $d$ is sufficiently large. In fact we prove a stronger result: for large $d$, any graph $G$ with average degree at least $d$ contains almost twice as many Hamiltonian subsets as $K_{d+1}$, unless $G$ is isomorphic to $K_{d+1}$ or a certain other graph which we specify.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا