ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic hydrodynamics represents a powerful tool to investigate the time evolution of the strongly interacting quark gluon plasma created in ultrarelativistic heavy ion collisions. The equations are solved often numerically, and numerous analyti c solutions also exist. However, the inclusion of viscous effects in exact, analytic solutions has received less attention. Here we utilize Hubble flow to investigate the role of bulk viscosity, and present different classes of exact, analytic solutions valid also in the presence of dissipative effects.
Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most importa nt such effect. In small systems like those created in e+e- or p+p collisions, the so-called Gamow factor (valid for a point-like particle source) gives an acceptable description of the Coulomb interaction. However, in larger systems such as central or mid-central heavy ion collisions, more involved approaches are needed. In this paper we investigate the Coulomb final state interaction for Levy-type source functions that were recently shown to be of much interest for a refined description of the space-time picture of particle production in heavy-ion collisions.
We utilize known exact analytic solutions of perfect fluid hydrodynamics to analytically calculate the polarization of baryons produced in heavy ion collisions. Assuming local thermodynamical equilibrium also for spin degrees of freedom, baryons get a net polarization at their formation (freeze-out). This polarization depends on the time evolution of the Quark-Gluon Plasma (QGP), which can be described as an almost perfect fluid. By using exact analytic solutions, we thus can analyze the necessity of rotation (and vorticity) for non-zero net polarization. In this paper we give the first analytical calculations for the polarization four-vector. We use two hydrodynamical solutions; one is the spherically symmetric Hubble flow (a somewhat oversimplified model, to demonstrate the methodology). The other solution which we use is a somewhat more involved one that corresponds to a rotating and accelerating expansion, and is thus well suited to investigate some main features of the time evolution of the QGP created in peripheral heavy-ion collisions (although there are still many numerous features of a real collision geometry that are beyond the reach of this simple model). Finally we illustrate and discuss our results on the polarization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا