ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changi ng the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.
We use the results of large-scale simulations of reionization to explore methods for characterizing the topology and sizes of HII regions during reionization. We use four independent methods for characterizing the sizes of ionized regions. Three of t hem give us a full size distribution: the friends-of-friends (FOF) method, the spherical average method (SPA) and the power spectrum (PS) of the ionized fraction. These latter three methods are complementary: While the FOF method captures the size distribution of the small scale H II regions, which contribute only a small amount to the total ionization fraction, the spherical average method provides a smoothed measure for the average size of the H II regions constituting the main contribution to the ionized fraction, and the power spectrum does the same while retaining more details on the size distribution. Our fourth method for characterizing the sizes of the H II regions is the average size which results if we divide the total volume of the H II regions by their total surface area, (i.e. 3V/A), computed in terms of the ratio of the corresponding Minkowski functionals of the ionized fraction field. To characterize the topology of the ionized regions, we calculate the evolution of the Euler Characteristic. We find that the evolution of the topology during the first half of reionization is consistent with inside-out reionization of a Gaussian density field. We use these techniques to investigate the dependence of size and topology on some basic source properties, such as the halo mass-to-light ratio, susceptibility of haloes to negative feedback from reionization, and the minimum halo mass for sources to form. We find that suppression of ionizing sources within ionized regions slows the growth of H II regions, and also changes their size distribution. Additionally, the topology of simulations including suppression is more complex. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا