ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe a high-resolution spectroscopy method, in which the detection of single excitation events is enhanced by a complete loss of coherence of a superposition of two ground states. Thereby, transitions of a single isolated atom nearly at rest a re recorded efficiently with high signal-to-noise ratios. Spectra display symmetric line shapes without stray-light background from spectroscopy probes. We employ this method on a $^{25}$Mg$^+$ ion to measure one, two, and three-photon transition frequencies from the 3S ground state to the 3P, 3D, and 4P excited states, respectively. Our results are relevant for astrophysics and searches for drifts of fundamental constants. Furthermore, the method can be extended to other transitions, isotopes, and species. The currently achieved fractional frequency uncertainty of $5 times 10^{-9}$ is not limited by the method.
We report on three-dimensional optical trapping of single ions in an optical lattice formed by two counter-propagating laser beams. We characterize the trapping parameters of the standing wave using the ion as a sensor stored in a hybrid trap consist ing of a radio-frequency (rf), a dc, and the optical potential. When loading ions directly from the rf into the standing-wave trap, we observe a dominant heating rate. Monte Carlo simulations confirm rf-induced parametric excitations within the deep optical lattice as the main source. We demonstrate a way around this effect by an alternative transfer protocol which involves an intermediate step of optical confinement in a single-beam trap avoiding the temporal overlap of the standing wave and the rf field. Implications arise for hybrid (rf/optical) and pure optical traps as platforms for ultra-cold chemistry experiments exploring atom--ion collisions or quantum simulation experiments with ions, or combinations of ions and atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا