ترغب بنشر مسار تعليمي؟ اضغط هنا

Over the past 16 years, NASAs Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nucl ei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payload consisting of a high resolution X-ray telescope and an instrument set which may include an X-ray calorimeter, a wide-field imager and a dispersive grating spectrometer and readout. The telescope would consist of highly nested thin shells, for which a number of technical approaches are currently under development, including adjustable X-ray optics, differential deposition, and modern polishing techniques applied to a variety of substrates. In many areas, the mission requirements would be no more stringent than those of Chandra, and the study takes advantage of similar studies for other large area missions carried out over the past two decades. Initial assessments indicate that such an X-ray mission is scientifically compelling, technically feasible, and worthy of a high rioritization by the next American National Academy of Sciences Decadal Survey for Astronomy and Astrophysics.
I summarize the excitement of my role primarily in the early years of X-ray Astronomy. As a second-generation X-ray astronomer, I was privileged to participate in the enormous advance of the field, both technically and astrophysically, that occurred in the late 1960s and 1970s. The remainder of my career has concentrated on the design, construction, calibration, operation, and scientific maintenance of the cathedral that is the Chandra X-Ray Observatory. I contrast my early experiences with the current environment for the design and development of instrumentation, especially X-ray optics, which are absolutely essential for the development of the discipline. I express my concerns for the future of X-ray astronomy and offer specific suggestions that I hope will advance the discipline at a more effective and rapid pace.
Subsequent to announcements by the AGILE and by the Fermi-LAT teams of the discovery of gamma-ray flares from the Crab Nebula in the fall of 2010, an international collaboration has been monitoring X-Ray emission from the Crab on a regular basis usin g the Chandra X-Ray Observatory. Observations occur typically once per month when viewing constraints allow. The aim of the program is to characterize in depth the X-Ray variations within the Nebula, and, if possible, to much more precisely locate the origin of the gamma-ray flares. In 2011 April we triggered a set of Chandra Target-of-Opportunity observations in conjunction with the brightest gamma-ray flare yet observed. We briefly summarize the April X-ray observations and the information we have gleaned to date.
We present results from our analysis of Chandra X-ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the gamma-ray flare of 2011 April. Despite hints in the X-ra y data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the inner knot, i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the gamma-ray flares and suggest that the most dramatic gamma-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.
We summarize here the results, most of which are preliminary, of a number of recent observations of the Crab nebula system with the Chandra X-Ray Observatory. We discuss four different topics: (1) The motion on long (> 1yr) time scales of the souther n jet. (2) The discovery that pulsar is not at the center of the projected ring on the sky and that the ring may well lie on the axis of symmetry but appears to be displaced at a latitude of about 5 degrees. (Note that this deprojection is by no means unique.) (3) The results and puzzling implications of the Chandra phase-resolved spectroscopy of the pulsar when compared to observations of pulse-phase variations of similar and dissimilar measures in other regions of the spectrum. (4) The search for the X-ray location of the site of the recently-discovered gamma-ray flaring. We also comment briefly on our plan to use the Chandra data we obtained for the previous project to study the nature of the low-energy flux variations recently detected at hard X-ray energies.
We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i >23.0 mag and r > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا