ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric machines with very power-to-weight ratios are inevitable for hybrid electric aircraft applications. One potential technology that is very promising to achieve the required power-to-weight ratio for short-range aircraft, are superconductors u sed for high current densities in the stator or high magnetic fields in the rotor. In this paper, we present an indepth analysis of the potential for fully and partially superconducting electric machines that is based on an analytical approach taking into account all relevant physical domains such as electromagnetics, superconducting properties, thermal behavior as well as structural mechanics. For the requirements of the motors in the NASA N3-X concept aircraft, we find that fully superconducting machines could achieve 3.5 times higher power-to-weight ratio than partially superconducting machines. Furthermore, our model can be used to calculate the relevant KPIs such as mass, efficiency and cryogenic cooling requirements for any other machine design.
The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high temperature superconductivity. Ultracold fermions in optical lattices allow for the simu lation of the Hubbard Hamiltonian with a unique control over kinetic energy, interactions and doping. A great challenge is to reach the required low entropy and to observe antiferromagnetic spin correlations beyond nearest neighbors, for which quantum gas microscopes are ideal. Here we report on the direct, single-site resolved detection of antiferromagnetic correlations extending up to three sites in spin-$1/2$ Hubbard chains, which requires an entropy well below $s^*=ln(2)$. Finally, the simultaneous detection of spin and density opens the route towards the study of the interplay between magnetic ordering and doping in various dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا