ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of the correlated optical/X-ray low-frequency quasi-periodic oscillations (QPOs) in black hole binary SWIFT J1753.5-0127. The phase lag between two light-curves at the QPO frequency is close to zero. This result puts strong co nstraints on the nature of the optical emission in this object and on the origin of the QPOs in general. We demonstrate that the QPO signal and the broadband variability can be explained in terms of the hot accretion flow radiating in both optical and X-ray bands. In this model, the QPO appears due to the Lense-Thirring precession of entire flow, while the broadband variability in the optical is produced by two components: the hot flow and the irradiated disc. Using the phase-lag spectra, we put a lower limit on the orbital inclination i>50 deg, which can be used to constrain the mass of the compact object.
We report on detection of the double pulsar system J0737-3039 in the far-UV with the ACS/SBC detector aboard HST. We measured the energy flux F = 4.5+/-1.0e-17 erg cm-2s-1 in the 1250-1550 AA band, which corresponds to the extinction-corrected lumino sity L~1.5e28 erg s-1 for the distance d=1.1 kpc and a plausible reddening E(B-V)=0.1. If the detected emission comes from the entire surface of one of the neutron stars with a 13 km radius, the surface blackbody temperature is in the range T~2-5e5 K for a reasonable range of interstellar extinction. Such a temperature requires an internal heating mechanism to operate in old neutron stars, or it might be explained by heating of the surface of the less energetic Pulsar B by the relativistic wind of Pulsar A. If the far-UV emission is non-thermal (e.g., produced in the magnetosphere of Pulsar A), its spectrum exhibits a break between the UV and X-rays.
We present observations of the eccentric gamma-ray binary B1259-63/LS2883 with the Chandra X-ray Observatory. The images reveal a variable, extended about 4, or about 1000 times the binary orbit size) structure, which appears to be moving away from t he binary with the velocity of 0.05 of the speed of light. The observed emission is interpreted as synchrotron radiation from relativistic particles supplied by the pulsar. However, the fast motion through the circumbinary medium would require the emitting cloud to be loaded with a large amount of baryonic matter. Alternatively, the extended emission can be interpreted as a variable extrabinary shock in the pulsar wind outflow launched near binary apastron. The resolved variable X-ray nebula provides an opportunity to probe pulsar winds and their interaction with stellar winds in a previously inaccessible way.
We have studied the fascinating dynamics of the nearby Vela pulsars nebula in a campaign comprising eleven 40ks observations with Chandra X-ray Observatory (CXO). The deepest yet images revealed the shape, structure, and motion of the 2-arcminute-lon g pulsar jet. We find that the jets shape and dynamics are remarkably consistent with that of a steadily turning helix projected on the sky. We discuss possible implications of our results, including free precession of the neutron star and MHD instability scenarios.
The vast majority of known non-accreting neutron stars (NSs) are rotation-powered radio and/or gamma-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and non-thermal continuum models, with no spectr al lines. Spectral features have, however, been found in a handful of exotic NSs and thought to be a manifestation of their unique traits. Here we report the detection of absorption features in the X-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.
Using high-quality Hubble Space Telescope observations, we construct the near infra-red (NIR) to far ultra-violet (FUV) spectral energy distribution (SED) of PSR B0656+14. The SED is non-monotonic. Fitting it with a simple combination of a Rayleigh-J eans spectrum (UV) and non-thermal power-law (optical/NIR) leaves significant residuals, strongly hinting at one or more spectral features. We consider various models (combination of continuum components, and absorption/emission lines) with possible interpretations, and place them in the context of the broader spectral energy distribution. Surprisingly, the extrapolation of the best-fit X-ray spectral model roughly match the NIR-FUV data, and the power-law component is also consistent with the gamma-ray fluxes. We compare the multiwavelength SED of B0656+14 with those of other optical, X-ray and gamma-ray detected pulsars, and notice that a simple power-law spectrum crudely accounts for most of the non-thermal emission.
56 - Martin Durant , 2011
We report broad-band Hubble Space Telescope imaging of the field of soft gamma-ray repeater SGR 0418+5729 with ACS/WFC and WFC3/IR. Observing in two wide filters F606W and F110W, we find no counterpart within the positional error circle derived from Chandra observations, to limiting magnitudes mF606W>28.6, mF110W>27.4 (Vega system), equivalent to reddening-corrected luminosity limits LF606W<5e28, LF110W<6e28 erg s-1 for a distance d=2 kpc, at 3sig confidence. This, in turn, imposes lower limits on the contemporaneous X-ray/optical flux ratio of 1100 and X-ray/near-infra-red flux ratio of 1000. We derive an upper limit on the temperature and/or size of any fall-back disk around the magnetar. We also compare the detection limits with observations of other magnetars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا