ترغب بنشر مسار تعليمي؟ اضغط هنا

A full treatment for the scattering of an arbitrary number of bosons through a Bell multiport beam splitter is presented that includes all possible output arrangements. Due to exchange symmetry, the event statistics differs dramatically from the clas sical case in which the realization probabilities are given by combinatorics. A law for the suppression of output configurations is derived and shown to apply for the majority of all possible arrangements. Such multiparticle interference effects dominate at the level of single transition amplitudes, while a generic bosonic signature can be observed when the average number of occupied ports or the typical number of particles per port is considered. The results allow to classify in a common approach several recent experiments and theoretical studies and disclose many accessible quantum statistical effects involving many particles.
We derive an explicit analytic estimate for the entanglement of a large class of bipartite quantum states which extends into bound entanglement regions. This is done by using an efficiently computable concurrence lower bound, which is further employe d to numerically construct a volume of $3 times 3$ bound entangled states.
We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا