ترغب بنشر مسار تعليمي؟ اضغط هنا

The goal of developing a firmer theoretical understanding of inhomogenous temporal processes -- in particular, the waiting times in some collective dynamical system -- is attracting significant interest among physicists. Quantifying the deviations in the waiting-time distribution away from one generated by a random process, may help unravel the feedback mechanisms that drive the underlying dynamics. We analyze the waiting-time distributions of high frequency foreign exchange data for the best executable bid-ask prices across all major currencies. We find that the lognormal distribution yields a good overall fit for the waiting-time distribution between currency rate changes if both short and long waiting times are included. If we restrict our study to long waiting-times, each currency pairs distribution is consistent with a power law tail with exponent near to 3.5. However for short waiting times, the overall distribution resembles one generated by an archetypal complex systems model in which boundedly rational agents compete for limited resources. Our findings suggest a gradual transition arises in trading behavior between a fast regime in which traders act in a boundedly rational way, and a slower one in which traders decisions are driven by generic feedback mechanisms across multiple timescales and hence produce similar power-law tails irrespective of currency type.
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track t he effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using dynamical community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
We investigate triangular arbitrage within the spot foreign exchange market using high-frequency executable prices. We show that triangular arbitrage opportunities do exist, but that most have short durations and small magnitudes. We find intra-day v ariations in the number and length of arbitrage opportunities, with larger numbers of opportunities with shorter mean durations occurring during more liquid hours. We demonstrate further that the number of arbitrage opportunities has decreased in recent years, implying a corresponding increase in pricing efficiency. Using trading simulations, we show that a trader would need to beat other market participants to an unfeasibly large proportion of arbitrage prices to profit from triangular arbitrage over a prolonged period of time. Our results suggest that the foreign exchange market is internally self-consistent and provide a limited verification of market efficiency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا