ترغب بنشر مسار تعليمي؟ اضغط هنا

We present single-dish and VLBI observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.3 north. Using t he Very Long Baseline Array, we obtained five observations spanning 3 months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over 3 or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of ~45deg. They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions (~220deg) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH410, HH411, HH412, and HH184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of ~190deg) must also originate in the vicinity of Haro6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H_2 emission in the spectrum of the northern component of the binary, Haro6-10N, none of outflows/jets can be tied directly to this young stellar object.
We present MSX two-color diagrams that can be used to characterize circumstellar environments of sources with good quality MSX colors in terms of IRAS color regions for oxygen-rich stars. With these diagrams we aim to provide a new tool that can be u sed to study circumstellar environments and to improve detection rates for targeted surveys for circumstellar maser emission similar to the IRAS two-color diagram. This new tool is especially useful for regions in the sky where IRAS was confused, in particular in the Galactic plane and bulge region. Unfortunately, using MSX colors alone does not allow to distinguish between carbon-rich and oxygen-rich objects. An application of this tool on 86 GHz SiO masers shows that for this type of masers an instantaneous detection rate of 60% to 80% can be achieved if target sources are selected according to MSX color (region). Our investigations may have revealed an error in the MSX point source catalog version 2.3. That is, the photometry of the 21.3 $mu$m (MSX E filter) band for most weak 8.28 $mu$m (or MSX A filter) band sources seems off by about a factor two (0.5--1 magnitude too bright).
We present results of VLBI observations of the water masers associated with IRAS 4A and IRAS 4B in the NGC 1333 star-forming region taken in four epochs over a two month period. Both objects have been classified as extremely young sources and each so urce is known to be a multiple system. Using the Very Long Baseline Array, we detected 35 masers in Epoch I, 40 masers in Epoch II, 35 in Epoch III, and 24 in Epoch IV. Only one identified source in each system associates with these masers. These data are used to calculate proper motions for the masers and trace the jet outflows within 100 AU of IRAS 4A2 and IRAS 4BW. In IRAS 4A2 there are two groups of masers, one near the systemic cloud velocity and one red-shifted. They expand linearly away from each other at velocities of 53 km/s. In IRAS 4BW, masers are observed in two groups that are blue-shifted and red-shifted relative to the cloud velocity. They form complex linear structures with a thickness of 3 mas (1 AU at a distance of 320 pc) that expand linearly away from each other at velocities of 78 km/s. Neither of the jet outflows traced by the maser groups align with the larger scale outflows. We suggest the presence of unresolved companions to both IRAS 4A2 and 4BW.
Excited-state OH maser emission has previously been reported in the circumstellar envelopes of only two evolved stars: the Mira star AU Geminorum and the hypergiant NML Cygni. We present Very Large Array (VLA) observations of the 1665, 1667, and exci ted-state 4750 MHz mainline OH transitions in AU Gem and Expanded Very Large Array (EVLA) observations of the excited-state 6030 and 6035 MHz OH mainline transitions in NML Cyg. We detect masers in both mainline transitions in AU Gem but no excited-state emission in either star. We conclude that the excited-state OH emission in AU Gem is either a transient phenomenon (such as for NML Cyg outlined below), or possibly an artifact in the data, and that the excited state OH emission in NML Cyg was generated by an episode of enhanced shock between the stellar mass-loss and an outflow of the Cyg OB2 association. With these single exceptions, it therefore appears that excited-state OH emission indeed should not be predicted nor observable in evolved stars as part of their normal structure or evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا