ترغب بنشر مسار تعليمي؟ اضغط هنا

We show polynomial-time quantum algorithms for the following problems: (*) Short integer solution (SIS) problem under the infinity norm, where the public matrix is very wide, the modulus is a polynomially large prime, and the bound of infinity norm is set to be half of the modulus minus a constant. (*) Extrapolated dihedral coset problem (EDCP) with certain parameters. (*) Learning with errors (LWE) problem given LWE-like quantum states with polynomially large moduli and certain error distributions, including bounded uniform distributions and Laplace distributions. The SIS, EDCP, and LWE problems in their standard forms are as hard as solving lattice problems in the worst case. However, the variants that we can solve are not in the parameter regimes known to be as hard as solving worst-case lattice problems. Still, no classical or quantum polynomial-time algorithms were known for those variants. Our algorithms for variants of SIS and EDCP use the existing quantum reductions from those problems to LWE, or more precisely, to the problem of solving LWE given LWE-like quantum states. Our main contributions are introducing a filtering technique and solving LWE given LWE-like quantum states with interesting parameters.
79 - Qipeng Liu , Mark Zhandry 2018
A $k$-collision for a compressing hash function $H$ is a set of $k$ distinct inputs that all map to the same output. In this work, we show that for any constant $k$, $Thetaleft(N^{frac{1}{2}(1-frac{1}{2^k-1})}right)$ quantum queries are both necessar y and sufficient to achieve a $k$-collision with constant probability. This improves on both the best prior upper bound (Hosoyamada et al., ASIACRYPT 2017) and provides the first non-trivial lower bound, completely resolving the problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا