ترغب بنشر مسار تعليمي؟ اضغط هنا

The capabilities of autonomous flight with unmanned aerial vehicles (UAVs) have significantly increased in recent times. However, basic problems such as fast and robust geo-localization in GPS-denied environments still remain unsolved. Existing resea rch has primarily concentrated on improving the accuracy of localization at the cost of long and varying computation time in various situations, which often necessitates the use of powerful ground station machines. In order to make image-based geo-localization online and pragmatic for lightweight embedded systems on UAVs, we propose a framework that is reliable in changing scenes, flexible about computing resource allocation and adaptable to common camera placements. The framework is comprised of two stages: offline database preparation and online inference. At the first stage, color images and depth maps are rendered as seen from potential vehicle poses quantized over the satellite and topography maps of anticipated flying areas. A database is then populated with the global and local descriptors of the rendered images. At the second stage, for each captured real-world query image, top global matches are retrieved from the database and the vehicle pose is further refined via local descriptor matching. We present field experiments of image-based localization on two different UAV platforms to validate our results.
Limited flight range is a common problem for multicopters. To alleviate this problem, we propose a method for finding the optimal speed and heading of a multicopter when flying a given path to achieve the longest flight range. Based on a novel multiv ariable extremum seeking controller with adaptive step size, the method (a) does not require any power consumption model of the vehicle, (b) can adapt to unknown disturbances, (c) can be executed online, and (d) converges faster than the standard extremum seeking controller with constant step size. We conducted indoor experiments to validate the effectiveness of this method under different payloads and initial conditions, and showed that it is able to converge more than 30% faster than the standard extremum seeking controller. This method is especially useful for applications such as package delivery, where the size and weight of the payload differ for different deliveries and the power consumption of the vehicle is hard to model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا