ترغب بنشر مسار تعليمي؟ اضغط هنا

Accreting millisecond pulsars show significant variability of their pulse profiles, especially at low accretion rates. On the other hand, their X-ray spectra are remarkably similar with not much variability over the course of the outbursts. For the f irst time, we have discovered that during the 2008 outburst of SAX J1808.4-3658 a major pulse profile change was accompanied by a dramatic variation of the disc luminosity at almost constant total luminosity. We argue that this phenomenon is related to a change in the coupling between the neutron star magnetic field and the accretion disc. The varying size of the pulsar magnetosphere can influence the accretion curtain geometry and affect the shape and the size of the hotspots. Using this physical picture, we develop a self-consistent model that successfully describes simultaneously the pulse profile variation as well as the spectral transition. Our findings are particularly important for testing the theories of accretion onto magnetized neutron stars, better understanding of the accretion geometry as well as the physics of disc-magnetosphere coupling. The identification that varying hotspot size can lead to pulse profile changes has profound implications for determination of the neutron star masses and radii.
The light curves observed from X-ray pulsars and magnetars reflect the radiation emission pattern, the geometry of the magnetic field, and the neutron star compactness. We study the statistics of X-ray pulse profiles in order to constrain the neutron star compactness and the magnetic field geometry. We collect the data for 124 X-ray pulsars, which are mainly in high-mass X-ray binary systems, and classify their pulse profiles according to the number of observed peaks seen during one spin period, dividing them into two classes, single- and double-peaked. We find that the pulsars are distributed about equally between both groups. We also compute the probabilities predicted by the theoretical models of two antipodal point-like spots that emit radiation according to the pencil-like emission patterns. These are then compared to the observed fraction of pulsars in the two classes. Assuming a blackbody emission pattern, it is possible to constrain the neutron star compactness if the magnetic dipole has arbitrary inclinations to the pulsar rotational axis. More realistic pencil-beam patterns predict that 79% of the pulsars are double-peaked independently of their compactness. The theoretical predictions can be made consistent with the data if the magnetic dipole inclination to the rotational axis has an upper limit of 40+/-4 deg. We also discuss the effect of limited sensitivity of the X-ray instruments to detect weak pulses, which lowers the number of detected double-peaked profiles and makes the theoretical predictions to be consistent with the data even if the magnetic dipole does have random inclinations. This shows that the statistics of pulse profiles does not allow us to constrain the neutron star compactness. In contrast to the previous claims by Bulik et al. (2003), the data also do not require the magnetic inclination to be confined in a narrow interval.
Timing noise in the data on accretion-powered millisecond pulsars (AMP) appears as irregular pulse phase jumps on timescales from hours to weeks. A large systematic phase drift is also observed in the first discovered AMP SAX J1808.4-3658. To study t he origin of these timing features, we use here the data of the well studied 2002 outburst of SAX J1808.4-3658. We develop first a model for pulse profile formation accounting for the screening of the antipodal emitting spot by the accretion disk. We demonstrate that the variations of the visibility of the antipodal spot associated with the receding accretion disk cause a systematic shift in Fourier phases, observed together with the changes in the pulse form. We show that a strong secondary maximum can be observed only in a narrow intervals of inner disk radii, which explains the very short appearance of the double-peaked profiles in SAX J1808.4-3658. By directly fitting the pulse profile shapes with our model, we find that the main parameters of the emitting spot such as its mean latitude and longitude as well as the emissivity pattern change irregularly causing small shifts in pulse phase, and the strong profile variations are caused by the increasing inner disk radius. We finally notice that significant variations in the pulse profiles in the 2002 and 2008 outbursts of SAX J1808.4-3658 happen at fluxes differing by a factor of 2, which can be explained if the inner disk radius is not a simple function of the accretion rate, but depends on the previous history.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا