ترغب بنشر مسار تعليمي؟ اضغط هنا

When an electric current passes across a potential barrier, the partition process of electrons at the barrier gives rise to the shot noise, reflecting the discrete nature of the electric charge. Here we report the observation of excess shot noise con nected with a spin current which is induced by a nonequilibrium spin accumulation in an all-semiconductor lateral spin-valve device. We find that this excess shot noise is proportional to the spin current. Additionally, we determine quantitatively the spin-injection-induced electron temperature by measuring the current noise. Our experiments show that spin accumulation driven shot noise provides a novel means of investigating nonequilibrium spin transport.
We investigate the correlation between spin signals measured in three-terminal (3T) geometry by the Hanle effect and the spin accumulation generated in a semiconductor channel in a lateral (Ga,Mn)As/GaAs Esaki diode device. We systematically compare measurements using a 3T configuration, probing spin accumulation directly beneath the injecting contact, with results from nonlocal measurements, where solely spin accumulation in the GaAs channel is probed. We find that the spin signal detected in the 3T configuration is dominated by a bias-dependent spin detection sensitivity, which in turn is strongly correlated with charge-transport properties of the junction. This results in a particularly strong enhancement of the detected spin signal in a region of increased differential resistance. We find additionally that two-step tunneling via localized states (LS) in the gap of (Ga,Mn)As does not compromise spin injection into the semiconductor conduction band.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا