ترغب بنشر مسار تعليمي؟ اضغط هنا

We study experimentally light localization at phase-slip waveguides and at the intersection of phase-slips in a two-dimensional (2D) square photonic lattice. Such system allows to observe a variety of effects, including the existence of spatially loc alized modes for low powers, the generation of strongly localized states in the form of discrete bulk and surface solitons, as well as a crossover between one-dimensional (1D) and 2D localization.
We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the propert ies, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا