ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an improved approach to the impedance spectroscopy of conductive liquid samples using four-electrode measurements. Our method enables impedance measurements of conductive liquids down to the sub-Hertz frequencies, avoiding the electrode po larization effects that usually cripple standard impedance analysers. We have successfully tested our apparatus with aqueous solutions of potassium chloride and gelatin. The first substance has shown flat spectra from $sim$100 kHz down to sub-Hz range, while the results on gelatin clearly show the existence of two distinct low frequency conductive relaxations.
We have measured the Hall effect on recently synthesized single crystals of quasi-one-dimensional organic conductor TTF-TCNQ, a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ) chains . The measurements were performed in the temperature interval 30 K < T < 300 K and for several different magnetic field and current directions through the crystal. By applying the equivalent isotropic sample (EIS) approach, we have demonstrated the importance of the choice of optimal geometry for accurate Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is around zero in high temperature region (T > 150 K), implying that there is no dominance of either TTF or TCNQ chain. At lower temperatures, our measurements clearly prove that all three phase transitions of TTF-TCNQ could be identified from Hall effect measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا