ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Sahba Yahya 2013
The standard concordance model of the Universe is based on the cosmological constant as the driver of accelerating expansion. This concordance model is being subjected to a growing range of inter-locking observations. In addition to using generic obs ervational tests, one can also design tests that target the specific properties of the cosmological constant. These null tests do not rely on parametrisations of observables, but focus on quantities that are constant only if dark energy is a cosmological constant. We use supernova data in null tests that are based on the luminosity distance. In order to extract derivatives of the distance in a model-independent way, we use Gaussian Processes. We find that the concordance model is compatible with the Union 2.1 data, but the error bars are fairly large. Simulated datasets are generated for the DES supernova survey and we show that this survey will allow for a sharper null test of the cosmological constant if we assume the Universe is flat. Allowing for spatial curvature degrades the power of the null test.
We present a short (and necessarily incomplete) review of the evidence for the accelerated expansion of the Universe. The most direct probe of acceleration relies on the detailed study of supernovae (SN) of type Ia. Assuming that these are standardiz able candles and that they fairly sample a homogeneous and isotropic Universe, the evidence for acceleration can be tested in a model- and calibration-independent way. Various light-curve fitting procedures have been proposed and tested. While several fitters give consistent results for the so-called Constitution set, they lead to inconsistent results for the recently released SDSS SN. Adopting the SALT fitter and relying on the Union set, cosmic acceleration is detected by a purely kinematic test at 7 sigma when spatial flatness is assumed and at 4 sigma without assumption on the spatial geometry. A weak point of the described method is the local set of SN (at z < 0.2), as these SN are essential to anchor the Hubble diagram. These SN are drawn from a volume much smaller than the Hubble volume and could be affected by local structure. Without the assumption of homogeneity, there is no evidence for acceleration, as the effects of acceleration are degenerate with the effects of inhomogeneities. Unless we sit in the centre of the Universe, such inhomogeneities can be constrained by SN observations by means of tests of the isotropy of the Hubble flow.
The present standard model of cosmology states that the known particles carry only a tiny fraction of total mass and energy of the Universe. Rather, unknown dark matter and dark energy are the dominant contributions to the cosmic energy budget. We re view the logic that leads to the postulated dark energy and present an alternative point of view, in which the puzzle may be solved by properly taking into account the influence of cosmic structures on global observables. We illustrate the effect of averaging on the measurement of the Hubble constant.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا