ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper addresses the problem of estimating drift parameter of the Ornstein - Uhlenbeck type process, driven by the sum of independent standard and fractional Brownian motions. The maximum likelihood estimator is shown to be consistent and asympto tically normal in the large-sample limit, using some recent results on the canonical representation and spectral structure of mixed processes.
The Gartner-Ellis condition for the square of an asymptotically stationary Gaussian process is established. The same limit holds for the conditional distri-bution given any fixed initial point, which entails weak multiplicative ergodicity. The limit is shown to be the Laplace transform of a convolution of Gamma distributions with Poisson compound of exponentials. A proof based on Wiener-Hopf factorization induces a probabilistic interpretation of the limit in terms of a regression problem.
A new result on stability of an optimal nonlinear filter with respect to small perturbations on every step is established.
The Laplace transform of partial sums of the square of a non-centered Gauss-Markov process, conditioning on its starting point, is explicitly computed. The parameters of multiplicative ergodicity are deduced.
260 - Marina Kleptsyna 2013
The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalize d difference between solutions of the original and the homogenized problems. The asymptotic behaviour of this difference depends crucially on the ratio between spatial and temporal scaling factors. Here we study the case of self-similar parabolic diffusion scaling.
In this paper we are interested in the Maximum Likelihood Estimator (MLE) of the vector parameter of an autoregressive process of order $p$ with regular stationary Gaussian noise. We exhibit the large sample asymptotical properties of the MLE under v ery mild conditions. Simulations are done for fractional Gaussian noise (fGn), autoregressive noise (AR(1)) and moving average noise (MA(1)).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا