ترغب بنشر مسار تعليمي؟ اضغط هنا

We compare two major approaches to variable selection in clustering: model selection and regularization. Based on previous results, we select the method of Maugis et al. (2009b), which modified the method of Raftery and Dean (2006), as a current stat e of the art model selection method. We select the method of Witten and Tibshirani (2010) as a current state of the art regularization method. We compared the methods by simulation in terms of their accuracy in both classification and variable selection. In the first simulation experiment all the variables were conditionally independent given cluster membership. We found that variable selection (of either kind) yielded substantial gains in classification accuracy when the clusters were well separated, but few gains when the clusters were close together. We found that the two variable selection methods had comparable classification accuracy, but that the model selection approach had substantially better accuracy in selecting variables. In our second simulation experiment, there were correlations among the variables given the cluster memberships. We found that the model selection approach was substantially more accurate in terms of both classification and variable selection than the regularization approach, and that both gave more accurate classifications than $K$-means without variable selection.
In unsupervised classification, Hidden Markov Models (HMM) are used to account for a neighborhood structure between observations. The emission distributions are often supposed to belong to some parametric family. In this paper, a semiparametric model ing where the emission distributions are a mixture of parametric distributions is proposed to get a higher flexibility. We show that the classical EM algorithm can be adapted to infer the model parameters. For the initialisation step, starting from a large number of components, a hierarchical method to combine them into the hidden states is proposed. Three likelihood-based criteria to select the components to be combined are discussed. To estimate the number of hidden states, BIC-like criteria are derived. A simulation study is carried out both to determine the best combination between the merging criteria and the model selection criteria and to evaluate the accuracy of classification. The proposed method is also illustrated using a biological dataset from the model plant Arabidopsis thaliana. A R package HMMmix is freely available on the CRAN.
Tiling arrays make possible a large scale exploration of the genome thanks to probes which cover the whole genome with very high density until 2 000 000 probes. Biological questions usually addressed are either the expression difference between two c onditions or the detection of transcribed regions. In this work we propose to consider simultaneously both questions as an unsupervised classification problem by modeling the joint distribution of the two conditions. In contrast to previous methods, we account for all available information on the probes as well as biological knowledge like annotation and spatial dependence between probes. Since probes are not biologically relevant units we propose a classification rule for non-connected regions covered by several probes. Applications to transcriptomic and ChIP-chip data of Arabidopsis thaliana obtained with a NimbleGen tiling array highlight the importance of a precise modeling and the region classification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا