ترغب بنشر مسار تعليمي؟ اضغط هنا

The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO and Virgo, have operated and taken data at their design sensitivities over the last few years. The data has been examined for the presence of gravitational w ave signals. Presented here is a comprehensive review of the most significant results. The network of detectors is currently being upgraded and extended, providing a large likelihood for observations. These future prospects will also be discussed.
Presented in this paper is a technique that we propose for extracting the physical parameters of a rotating stellar core collapse from the observation of the associated gravitational wave signal from the collapse and core bounce. Data from interferom etric gravitational wave detectors can be used to provide information on the mass of the progenitor model, precollapse rotation and the nuclear equation of state. We use waveform libraries provided by the latest numerical simulations of rotating stellar core collapse models in general relativity, and from them create an orthogonal set of eigenvectors using principal component analysis. Bayesian inference techniques are then used to reconstruct the associated gravitational wave signal that is assumed to be detected by an interferometric detector. Posterior probability distribution functions are derived for the amplitudes of the principal component analysis eigenvectors, and the pulse arrival time. We show how the reconstructed signal and the principal component analysis eigenvector amplitude estimates may provide information on the physical parameters associated with the core collapse event.
215 - Michal Was 2009
Time shifting the outputs of Gravitational Wave detectors operating in coincidence is a convenient way to estimate the background in a search for short duration signals. However this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates this error saturates at a large value. Explicit computations are done for 2 detectors, and for 3 detectors where the detection statistic relies on the logical ``OR of the coincidences of the 3 couples in the network.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا