ترغب بنشر مسار تعليمي؟ اضغط هنا

During the last three decades progress in mapping the universe from an age of 400,000 years to the present has been stunning. Instrument/telescope combinations have naturally determined the sampling of various redshift ranges. Here we outline the imp act of the Hectospec on the MMT on exploration of the universe in the redshift range 0.2 < z < 0.8. We focus on dense redshift surveys, SHELS and HectoMAP. SHELS is a complete magnitude limited survey covering 8 square degrees. The HectoMAP survey combines a red-selected dense redshift survey and a weak lensing map covering 50 square degrees. Combining the dense redshift survey with a Subaru HyperSuprimeCam (HSC) weak lensing map will provide a powerful probe of the way galaxies trace the distribution of dark matter on a wide range of physical scales.
64 - Anna Barnacka 2015
Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distance sources and produce time delays between mirage images. Gravitationally-induce d time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT satellite continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally-lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the Autocorrelation Function, the Double Power Spectrum, and the Maximum Peak Method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally-lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10000. We analyze four active periods. For two of these periods, the emission is consistent with origination from the core and for the other two, the data suggest that the emission region is displaced from the core by more that ~1.5 kpc. For the core emission, the gamma-ray time delays, $23pm0.5$ days and $19.7pm1.2$ days, are consistent with the radio time delay $26^{+4}_{-5}$ days.
We use dense redshift surveys of nine galaxy clusters at $zsim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literatur e, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{rm cl}<z<2z_{rm cl}$ is $10-23$% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses ($>$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.$_{2000}$ = 09$^h$ 19$^m$32.4$^s$ and Decl.$_{2000}$ = +30$^{circ}$00$^{prime}$00$^{primeprime}$). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg$^2$ F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is $ z = 0.3$; the survey provides a view of structure in the range 0.1 $ lesssim z lesssim 0.6$. A movie displays the large-scale structure in the survey region. We provide a redshift, spectral index D$_n$4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2 $< z <0. 38$. To demonstrate potential applications of the survey, we examine the behavior of the index D$_n$4000 as a function of galaxy luminosity, stellar mass, and redshift. The known evolutionary and stellar mass dependent properties of the galaxy population are cleanly evident in the data. We also show that the mass-metallicity relation previously determined from these data is robust to the analysis approach.
70 - Ivana Damjanov 2014
Massive compact systems at 0.2<z<0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme o bjects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the BOSS spectroscopic dataset by identifying point-like SDSS photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z~0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2<z<0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0<z<2.
The components of blazar jets that emit radiation span a factor of $10^{10}$ in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources and the observed light curve is thus the sum of the images. Durations of $gamma$-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong and weak lensing studies. Nonetheless there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxi es with r$_{petro} leq 20.5$ and within 50$^prime$ of the BCG (Brightest Cluster Galaxy: R.A.$_{2000} = 42.014125^circ$, Decl$_{2000} = -03.529228^circ$). We apply the caustic technique to identify 275 cluster members within 7$h^{-1}$ Mpc of the hierarchical cluster center. The BCG lies within $-11 pm 110$ km s$^{-1}$ and 21 $pm 56 h^{-1}$ kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak lensing contours of Okabe et al. (2010) especially when the impact of foreground and background structure is included. The values of R$_{200}$ = $1.22pm 0.01 h^{-1}$ Mpc and M$_{200}$ = $(5.07 pm 0.09)times 10^{14} h^{-1}$ M$_odot$ obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of $sim 5 h^{-1}$ Mpc.
54 - Warren R. Brown 2013
We analyze Keck ESI spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km/s in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T_eff and logg with stellar evolution tracks implies that HVS17 is a 3.91 +-0.09 Msun, 153 +-9 Myr old star at a Galactocentric distance of r=48.5 +-4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Ways dark matter halo.
Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing and the caustic technique, are independent of the assumption of dynamical equilibrium. Bot h techniques enable determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within about 30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the lensing mass profile exceeds the caustic mass profile possibly as a result of contamination of the lensing profile by large-scale structures within the lensing kernel. We highlight the case of the closely neighboring clusters MS0906+11 and A750 to illustrate the potential seriousness of contamination of the the weak lensing signal by unrelated structures.
58 - Ho Seong Hwang 2012
We use a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), covering a 4 square degree region of a deep imaging survey, the Deep Lens Survey (DLS), to study the optical spectral properties of Wide-field Infrared Survey Explorer (WISE) 22 mu m-selected galaxies. Among 507 WISE 22 mu m-selected sources with (S/N)_{22mu m}>3 (simS_{22mu m}>2.5 mJy), we identify the optical counterparts of 481 sources (sim98%) at R<25.2 in the very deep, DLS R-band source catalog. Among them, 337 galaxies at R<21 have SHELS spectroscopic data. Most of these objects are at z<0.8. The infrared (IR) luminosities are in the range 4.5x10^8 (L_sun) < L_{IR} < 5.4x10^{12} (L_sun). Most 22 mu m-selected galaxies are dusty star-forming galaxies with a small (<1.5) 4000 AA break. The stacked spectra of the 22 mu m-selected galaxies binned in IR luminosity show that the strength of the [O III] line relative to Hbeta grows with increasing IR luminosity. The optical spectra of the 22 mu m-selected galaxies also show that there are some (sim2.8%) unusual galaxies with very strong [Ne III] lambda 3869, 3968 emission lines that require hard ionizing radiation such as AGN or extremely young massive stars. The specific star formation rates (sSFRs) derived from the 3.6 and 22 mu m flux densities are enhanced if the 22 mu m-selected galaxies have close late-type neighbors. The sSFR distribution of the 22 mu m-selected galaxies containing active galactic nuclei (AGNs) is similar to the distribution for star-forming galaxies without AGNs. We identify 48 dust-obscured galaxy (DOG) candidates with large (gtrsim1000) mid-IR to optical flux density ratio. The combination of deep photometric and spectroscopic data with WISE data suggests that WISE can probe the universe to zsim2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا