ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the matrix elements of local and nonlocal operators in the single-particle eigenstates of two paradigmatic quantum-chaotic quadratic Hamiltonians; the quadratic Sachdev-Ye-Kitaev (SYK2) model and the three-dimensional Anderson model below th e localization transition. We show that they display eigenstate thermalization for normalized observables. Specifically, we show that the diagonal matrix elements exhibit vanishing eigenstate-to-eigenstate fluctuations, and a variance proportional to the inverse Hilbert space dimension. We also demonstrate that the ratio between the variance of the diagonal and the off-diagonal matrix elements is $2$, as predicted by the random matrix theory. We study distributions of matrix elements of observables and establish that they need not be Gaussian. We identify the class of observables for which the distributions are Gaussian.
We study the matrix elements of few-body observables, focusing on the off-diagonal ones, in the eigenstates of the two-dimensional transverse field Ising model. By resolving all symmetries, we relate the onset of quantum chaos to the structure of the matrix elements. In particular, we show that a general result of the theory of random matrices, namely, the value 2 of the ratio of variances (diagonal to off-diagonal) of the matrix elements of Hermitian operators, occurs in the quantum chaotic regime. Furthermore, we explore the behavior of the off-diagonal matrix elements of observables as a function of the eigenstate energy differences, and show that it is in accordance with the eigenstate thermalization hypothesis ansatz.
Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016)], we study the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captur es the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.
We use quantum Monte Carlo simulations to obtain zero-temperature state diagrams for strongly correlated lattice bosons in one and two dimensions under the influence of a harmonic confining potential. Since harmonic traps generate a coexistence of su perfluid and Mott insulating domains, we use local quantities such as the quantum fluctuations of the density and a local compressibility to identify the phases present in the inhomogeneous density profiles. We emphasize the use of the characteristic density to produce a state diagram that is relevant to experimental optical lattice systems, regardless of the number of bosons or trap curvature and of the validity of the local-density approximation. We show that the critical value of U/t at which Mott insulating domains appear in the trap depends on the filling in the system, and it is in general greater than the value in the homogeneous system. Recent experimental results by Spielman et al. [Phys. Rev. Lett. 100, 120402 (2008)] are analyzed in the context of our two-dimensional state diagram, and shown to exhibit a value for the critical point in good agreement with simulations. We also study the effects of finite, but low (T<t/2), temperatures. We find that in two dimensions they have little influence on our zero-temperature results, while their effect is more pronounced in one dimension.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا