ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase-noise-compensated 200 m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7 cdot 10^{-18} after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10^{14}. Furthermore, with an eye towards the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا