ترغب بنشر مسار تعليمي؟ اضغط هنا

A well-known question by Gromov asks whether the vanishing of the simplicial volume of oriented closed connected aspherical manifolds implies the vanishing of the Euler characteristic. We study vario
Johnsons characterization of amenable groups states that a discrete group $Gamma$ is amenable if and only if $H_b^{n geq 1}(Gamma; V) = 0$ for all dual normed $mathbb{R}[Gamma]$-modules $V$. In this paper, we extend the previous result to homomorphis ms by proving the converse of the Mapping Theorem: a surjective homomorphism $phi colon Gamma to K$ has amenable kernel $H$ if and only if the induced inflation map $H^bullet_b(K; V^H) to H^bullet_b(Gamma; V)$ is an isometric isomorphism for every dual normed $mathbb{R}[Gamma]$-module $V$. In addition, we obtain an analogous characterization for the (smaller) class of surjective homomorphisms $phi colon Gamma to K$ with the property that the inflation maps in bounded cohomology are isometric isomorphisms for all normed $mathbb{R}[Gamma]$-modules. Finally, we also prove a characterization of the (larger) class of boundedly acyclic homomorphisms $phi colon Gamma to K$, for which the restriction maps in bounded cohomology $H^bullet_b(K; V) to H^bullet_b(Gamma; phi^{-1}V)$ are isomorphisms for suitable dual normed $mathbb{R}[K]$-module $V$. We then extend the first and third results to spaces and obtain characterizations of amenable maps and boundedly acyclic maps in terms of the vanishing of the bounded cohomology of their homotopy fibers with respect to appropriate choices of coefficients.
We show that the Connes-Consani semi-norm on singular homology with real coefficients, defined via s-modules, coincides with the ordinary $ell^1$-semi-norm on singular homology in all dimensions.
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and s tudy the Cartan invariant for measurable $textup{PU}(m,1)$-cocycles of complex hyperbolic lattices.
As for the theory of maximal representations, we introduce the volume of a Zimmers cocycle $Gamma times X rightarrow mbox{PO}^circ(n, 1)$, where $Gamma$ is a torsion-free (non-)uniform lattice in $mbox{PO}^circ(n, 1)$, with $n geq 3$, and $X$ is a su itable standard Borel probability $Gamma$-space. Our numerical invariant extends the volume of representations for (non-)uniform lattices to measurable cocycles and in the uniform setting it agrees with the generalized version of the Euler number of self-couplings. We prove that our volume of cocycles satisfies a Milnor-Wood type inequality in terms of the volume of the manifold $Gamma backslash mathbb{H}^n$. This invariant can be interpreted as a suitable multiplicative constant between bounded cohomology classes. This allows us to characterize maximal cocycles for being cohomologous to the cocycle induced by the standard lattice embedding via a measurable map $X rightarrow mbox{PO}(n, 1)$ with essentially constant sign. As a by-product of our rigidity result for the volume of cocycles, we give a new proof of the mapping degree theorem. This allows us to provide a complete characterization of maps homotopic to local isometries between closed hyperbolic manifolds in terms of maximal cocycles. In dimension $n = 2$, we introduce the notion of Euler number of measurable cocycles associated to closed surface groups. It extends the classic Euler number of representations and it agrees with the generalized version of the Euler number of self-couplings up to a multiplicative constant. We show a Milnor-Wood type inequality whose upper bound is given by the modulus of the Euler characteristic. This gives an alternative proof of the same result for the generalized version of the Euler number of self-couplings. Finally, we characterize maximal cocycles as those which are cohomologous to the one induced by a hyperbolization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا