ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rossiter-McLaughlin (hereafter RM) effect is a key tool for measuring the projected spin-orbit angle between stellar spin axes and orbits of transiting planets. However, the measured radial velocity (RV) anomalies produced by this effect are not intrinsic and depend on both instrumental resolution and data reduction routines. Using inappropriate formulas to model the RM effect introduces biases, at least in the projected velocity Vsin(i) compared to the spectroscopic value. Currently, only the iodine cell technique has been modeled, which corresponds to observations done by, e.g., the HIRES spectrograph of the Keck telescope. In this paper, we provide a simple expression of the RM effect specially designed to model observations done by the Gaussian fit of a cross-correlation function (CCF) as in the routines performed by the HARPS team. We derived also a new analytical formulation of the RV anomaly associated to the iodine cell technique. For both formulas, we modeled the subplanet mean velocity v_p and dispersion beta_p accurately taking the rotational broadening on the subplanet profile into account. We compare our formulas adapted to the CCF technique with simulated data generated with the numerical software SOAP-T and find good agreement up to Vsin(i) < 20 km/s. In contrast, the analytical models simulating the two different observation techniques can disagree by about 10 sigma in Vsin(i) for large spin-orbit misalignments. It is thus important to apply the adapted model when fitting data.
This work presents the first high-precision variability survey in the field of the intermediate-age, metal--rich open cluster NGC 6253. Clusters of this type are benchmarks for stellar evolution models. Continuous photometric monitoring of the cluste r and its surrounding field was performed over a time span of ten nights using the Wide Field Imager mounted at the ESO-MPI 2.2m telescope. High-quality timeseries, each composed of about 800 datapoints, were obtained for 250,000 stars using ISIS and DAOPHOT packages. Candidate members were selected by using the colour-magnitude diagrams and period-luminosity-colour relations. Membership probabilities based on the proper motions were also used. The membership of all the variables discovered within a radius of 8 arcmin from the centre is discussed by comparing the incidence of the classes in the cluster direction and in the surrounding field. We discovered 595 variables and we also characterized most of them providing their variability classes, periods, and amplitudes. The sample is complete for short periods: we classified 20 pulsating variables, 225 contact systems, 99 eclipsing systems (22 Beta Lyr type, 59 Beta Per type, 18 RS CVn type), and 77 rotational variables. The time-baseline hampered the precise characterization of 173 variables with periods longer than 4-5 days. Moreover, we found a cataclysmic system undergoing an outburst of about 2.5 mag. We propose a list of 35 variable stars (8 contact systems, 2 eclipsing systems, 15 rotational variables, 9 long-period variables and the cataclysmic variable) as probable members of NGC 6253.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا