ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a general late-time interaction between cold dark matter and vacuum energy is favoured by current cosmological datasets. We characterize the strength of the coupling by a dimensionless parameter $q_V$ that is free to take different value s in four redshift bins from the primordial epoch up to today. This interacting scenario is in agreement with measurements of cosmic microwave background temperature anisotropies from the Planck satellite, supernovae Ia from Union 2.1 and redshift space distortions from a number of surveys, as well as with combinations of these different datasets. We show that a non-zero interaction is very likely at late times. We then focus on the case $q_V ot=0$ in a single low-redshift bin, obtaining a nested one parameter extension of the standard $Lambda$CDM model. We study the Bayesian evidence, with respect to $Lambda$CDM, of this late-time interaction model, finding moderate evidence for an interaction starting at $z=0.9$, dependent upon the prior range chosen for the interaction strength parameter $q_V$. For this case the null interaction ($q_V=0$, i.e.$Lambda$CDM) is excluded at 99% c.l..
We show how the non-linearity of general relativity generates a characteristic non-Gaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large scale limit. Newtonian gravity and general relativity pro vide complementary theoretical frameworks for modelling large-scale structure in $Lambda$CDM cosmology; a relativistic approach is essential to determine initial conditions which can then be used in Newtonian simulations studying the non-linear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, $zeta$. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, $R$, that drives structure formation at large scales. We show how the non-linear relation between the spatial curvature, $R$, and the metric perturbation, $zeta$, translates into a specific non-Gaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian $zeta$. Our analysis shows the non-linear signature of Einsteins gravity in large-scale structure.
Local non-Gaussianity, parametrized by $f_{rm NL}$, introduces a scale-dependent bias that is strongest at large scales, precisely where General Relativistic (GR) effects also become significant. With future data, it should be possible to constrain $ f_{rm NL} = {cal O}(1)$ with high redshift surveys. GR corrections to the power spectrum and ambiguities in the gauge used to define bias introduce effects similar to $f_{rm NL}= {cal O}(1)$, so it is essential to disentangle these effects. For the first time in studies of primordial non-Gaussianity, we include the consistent GR calculation of galaxy power spectra, highlighting the importance of a proper definition of bias. We present observable power spectra with and without GR corrections, showing that an incorrect definition of bias can mimic non-Gaussianity. However, these effects can be distinguished by their different redshift and scale dependence, so as to extract the true primordial non-Gaussianity.
We explore the dynamics of cosmological models with two coupled dark components with energy densities $rho_A$ and $rho_B$. We assume that the coupling is of the form $Q=Hq(rho_A,rho_B)$, so that the dynamics of the two components turns out to be scal e independent, i.e. does not depend explicitly on the Hubble scalar $H$. With this assumption, we focus on the general linear coupling $q=q_o+q_Arho_A+q_Brho_B$, which may be seen as arising from any $q(rho_A,rho_B)$ at late time and leads in general to an effective cosmological constant. In the second part of the paper we consider observational constraints on the form of the coupling from SN Ia data, assuming that one of the components is cold dark matter. We find that the constant part of the coupling function is unconstrained by SN Ia data and, among typical linear coupling functions, the one proportional to the dark energy density $rho_{A}$ is preferred in the strong coupling regime, $|q_{A}|>1$. While phantom models favor a positive coupling function, in non-phantom models, not only a negative coupling function is allowed, but the uncoupled sub-case falls at the border of the likelihood.
We explore the possibility that a scalar field with appropriate Lagrangian can mimic a perfect fluid with an affine barotropic equation of state. The latter can be thought of as a generic cosmological dark component evolving as an effective cosmologi cal constant plus a generalized dark matter. As such, it can be used as a simple, phenomenological model for either dark energy or unified dark matter. Furthermore, it can approximate (up to first order in the energy density) any barotropic dark fluid with arbitrary equation of state. We find that two kinds of Lagrangian for the scalar field can reproduce the desired behaviour: a quintessence-like with a hyperbolic potential, or a purely kinetic k-essence one. We discuss the behaviour of these two classes of models from the point of view of the cosmological background, and we give some hints on their possible clustering properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا