ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as fa r as available laser intensities will be increasing. Experiments have demonstrated in a wide range of laser and target parameters the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance and low emittance. In this paper we give an overview of the state-of-the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. We describe the main features observed in the experiments, the observed scaling with laser and plasma parameters and the main models used both to interpret experimental data and to suggest new research directions.
The generation of a magnetic field in a circular rarefaction wave is examined in form of a 2D particle-in-cell (PIC) simulation. Electrons with a temperature of 32 keV are uniformly distributed within a cloud with a radius of 14.2 electron skin depth s. They expand under their thermal pressure and carry with them the cold protons, which are initially concentrated in a hollow ring at the boundary of the electron cloud. The interior of the ring contains an immobile positive charge background that compensates for the electron charge. The protons expand in form of a circularly symmetric rarefaction wave and they extract energy from the electrons. A thermal anisotropy of the electrons develops and triggers through a Weibel-type instability the growth of TM waves within the plasma cloud, which acts as a wave guide. The changing cross section of this waveguide introduces a coupling between the TM wave and a TE wave and in-plane magnetic fields grow. The relevance of the simulation results to a previous experimental study of a laser-ablated wire is discussed.
The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and colli mation. Regimes based on Radiation Pressure Acceleration (RPA) might be the dominant ones at ultrahigh intensities and be most suitable for specific applications. This regime may be reached already with present-day intensities using circularly polarized (CP) pulses thanks to the suppression of fast electron generation, so that RPA dominates over sheath acceleration at any intensity. We present a brief review of previous work on RPA with CP pulses and a few recent results. Parametric studies in one dimension were performed to identify the optimal thickness of foil targets for RPA and to study the effect of a short-scalelength preplasma. Three-dimensional simulations showed the importance of ``flat-top radial intensity profiles to minimise the rarefaction of thin targets and to address the issue of angular momentum conservation and absorption.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا