ترغب بنشر مسار تعليمي؟ اضغط هنا

A common problem in the 4D reconstruction of people from multi-view video is the quality of the captured dynamic texture appearance which depends on both the camera resolution and capture volume. Typically the requirement to frame cameras to capture the volume of a dynamic performance ($>50m^3$) results in the person occupying only a small proportion $<$ 10% of the field of view. Even with ultra high-definition 4k video acquisition this results in sampling the person at less-than standard definition 0.5k video resolution resulting in low-quality rendering. In this paper we propose a solution to this problem through super-resolution appearance transfer from a static high-resolution appearance capture rig using digital stills cameras ($> 8k$) to capture the person in a small volume ($<8m^3$). A pipeline is proposed for super-resolution appearance transfer from high-resolution static capture to dynamic video performance capture to produce super-resolution dynamic textures. This addresses two key problems: colour mapping between different camera systems; and dynamic texture map super-resolution using a learnt model. Comparative evaluation demonstrates a significant qualitative and quantitative improvement in rendering the 4D performance capture with super-resolution dynamic texture appearance. The proposed approach reproduces the high-resolution detail of the static capture whilst maintaining the appearance dynamics of the captured video.
This paper proposes a novel Attention-based Multi-Reference Super-resolution network (AMRSR) that, given a low-resolution image, learns to adaptively transfer the most similar texture from multiple reference images to the super-resolution output whil st maintaining spatial coherence. The use of multiple reference images together with attention-based sampling is demonstrated to achieve significantly improved performance over state-of-the-art reference super-resolution approaches on multiple benchmark datasets. Reference super-resolution approaches have recently been proposed to overcome the ill-posed problem of image super-resolution by providing additional information from a high-resolution reference image. Multi-reference super-resolution extends this approach by providing a more diverse pool of image features to overcome the inherent information deficit whilst maintaining memory efficiency. A novel hierarchical attention-based sampling approach is introduced to learn the similarity between low-resolution image features and multiple reference images based on a perceptual loss. Ablation demonstrates the contribution of both multi-reference and hierarchical attention-based sampling to overall performance. Perceptual and quantitative ground-truth evaluation demonstrates significant improvement in performance even when the reference images deviate significantly from the target image. The project website can be found at https://marcopesavento.github.io/AMRSR/
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا