ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate bisimulation equivalence on Petri nets under durational semantics. Our motivation was to verify the conjecture that in durational setting, the bisimulation equivalence checking problem becomes more tractable than in ordinary setting (w hich is the case, e.g., over communication-free nets). We disprove this conjecture in three of four proposed variants of durational semantics. The fourth variant remains an intriguing open problem.
Wireless communication enables a broad spectrum of applications, ranging from commodity to tactical systems. Neighbor discovery (ND), that is, determining which devices are within direct radio communication, is a building block of network protocols a nd applications, and its vulnerability can severely compromise their functionalities. A number of proposals to secure ND have been published, but none have analyzed the problem formally. In this paper, we contribute such an analysis: We build a formal model capturing salient characteristics of wireless systems, most notably obstacles and interference, and we provide a specification of a basic variant of the ND problem. Then, we derive an impossibility result for a general class of protocols we term time-based protocols, to which many of the schemes in the literature belong. We also identify the conditions under which the impossibility result is lifted. Moreover, we explore a second class of protocols we term time- and location-based protocols, and prove they can secure ND.
In wireless systems, neighbor discovery (ND) is a fundamental building block: determining which devices are within direct radio communication is an enabler for networking protocols and a wide range of applications. To thwart abuse of ND and the resul tant compromise of the dependent functionality of wireless systems, numerous works proposed solutions to secure ND. Nonetheless, until very recently, there has been no formal analysis of secure ND protocols. We close this gap in cite{asiaccs08}, but we concentrate primarily on the derivation of an impossibility result for a class of protocols. In this paper, we focus on reasoning about specific protocols. First, we contribute a number of extensions and refinements on the framework of [24]. As we are particularly concerned with the practicality of provably secure ND protocols, we investigate availability and redefine accordingly the ND specification, and also consider composability of ND with other protocols. Then, we propose and analyze two secure ND protocols: We revisit one of the protocols analyzed in [24], and introduce and prove correct a more elaborate challenge-response protocol.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا