ترغب بنشر مسار تعليمي؟ اضغط هنا

It was recently demonstrated that contact binaries occur in globular clusters (GCs) only immediately below turn-off point and in the region of blue straggler stars (BSs). In addition, observations indicate that at least a significant fraction of BSs in these clusters was formed by the binary mass-transfer mechanism. The aim of our present investigation is to obtain and analyze a set of evolutionary models of cool, close detached binaries with a low metal abundance, which are characteristic of GC. We computed the evolution of 975 models of initially detached, cool close binaries with different initial parameters. The models include mass exchange between components as well as mass and angular momentum loss due to the magnetized winds for very low-metallicity binaries with Z = 0.001. The models are interpreted in the context of existing data on contact binary and blue straggler members of GCs. The model parameters agree well with the observed positions of the GC contact binaries in the Hertzsprung-Russell diagram. Contact binaries in the lower part of the cluster main sequence are absent because there are no binaries with initial orbital periods shorter than 1.5 d. Contact binaries end their evolution as mergers that appear in the BS region. Binary-formed BSs populate the whole observed BS region in a GC, but a gap is visible between low-mass mergers that are concentrated along the zero-age main sequence and binary BSs occupying the red part of the BS region. Very few binary mergers are expected to rotate rapidly and/or possess chemical peculiarities resulting from the exposure of the layers processed by CNO nuclear reactions. All other binary mergers are indistinguishable from the collisionally formed mergers. The results show that binary-formed BSs may constitute at least a substantial fraction of all BSs in a GC.
[Abridged] We test the evolutionary model of cool close binaries on the observed properties of near contact binaries (NCBs). Those with a more massive component filling the Roche lobe are SD1 binaries whereas in SD2 binaries the Roche lobe filling co mponent is less massive. Our evolutionary model assumes that, following the Roche lobe overflow by the more massive component (donor), mass transfer occurs until mass ratio reversal. A binary in an initial phase of mass transfer, before mass equalization, is identified with SD1 binary. We show that the transferred mass forms an equatorial bulge around the less massive component (accretor). Its presence slows down the mass transfer rate to the value determined by the thermal time scale of the accretor, once the bulge sticks out above the Roche lobe. It means, that in a binary with a (typical) mass ratio of 0.5 the SD1 phase lasts at least 10 times longer than resulting from the standard evolutionary computations neglecting this effect. This is why we observe so many SD1 binaries. Our explanation is in contradiction to predictions identifying the SD1 phase with a broken contact phase of the Thermal Relaxation Oscillations model. The continued mass transfer, past mass equalization, results in mass ratio reversed. SD2 binaries are identified with this phase. Our model predicts that the time scales of SD1 and SD2 phases are comparable to one another. Analysis of the observations of 22 SD1 binaries, 27 SD2 binaries and 110 contact binaries (CBs) shows that relative number of both types of NCBs favors similar time scales of both phases of mass transfer. Total masses, orbital angular momenta and orbital periods of SD1 and SD2 binaries are indistinguishable from each other whereas they differ substantially from the corresponding parameters of CBs. We conclude that the results of the analysis fully support the model presented in this paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا