ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable evanescent coupling is used to modify the optomechanical interactions within a split-beam photonic crystal nanocavity. An optical fiber taper probe is used to renormalize the optical nanocavity field and introduce a dissipative optomechanical coupling channel, reconfiguring and enhancing coupling between the optical and mechanical resonances of the device. Positioning of the fiber taper allows preferential coupling to specific mechanical modes and provides a mechanism for tuning the optomechanical interaction between dissipative and dispersive coupling regimes.
Dissipative and dispersive optomechanical couplings are experimentally observed in a photonic crystal split-beam nanocavity optimized for detecting nanoscale sources of torque. Dissipative coupling of up to approximately $500$ MHz/nm and dispersive c oupling of $2$ GHz/nm enable measurements of sub-pg torsional and cantilever-like mechanical resonances with a thermally-limited torque detection sensitivity of 1.2$times 10^{-20} text{N} , text{m}/sqrt{text{Hz}}$ in ambient conditions and 1.3$times 10^{-21} text{N} , text{m}/sqrt{text{Hz}}$ in low vacuum. Interference between optomechanical coupling mechanisms is observed to enhance detection sensitivity and generate a mechanical-mode-dependent optomechanical wavelength response.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا