ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a theoretical investigation of multifilter (U,B,V, I and K) light and radial velocity curves of five Classical Cepheids in NGC 1866, a young massive cluster of the Large Magellanic Cloud. The best fit models accounting for the luminosity a nd radial velocity variations of the five selected variables, four pulsating in the fundamental mode and one in the first overtone, provide direct estimates of their intrinsic stellar parameters and individual distances. The resulting stellar properties indicate a slightly brighter Mass Luminosity relation than the canonical one, possibly due to mild overshooting and/or mass loss. As for the inferred distances, the individual values are consistent within the uncertainties. Moreover, their weighted mean value corresponds to a distance modulus of 18.56 + - 0.03 (stat) + - 0.1 (syst) mag, in agreement with several independent results in the literature.
We present new sets of nonlinear, time-dependent convective hydrodynamical models of RR Lyrae stars assuming two metal (Z=0.0005, Z=0.001) and three helium abundances (Y=0.24, 0.30, 0.38). For each chemical composition we constructed a grid of fundam ental (FU) and first overtone (FO) models covering a broad range of stellar masses and luminosities. To constrain the impact of the helium content on RR Lyrae properties, we adopted two observables --period distribution, luminosity amplitudes-- that are independent of distance and reddening. The current predictions confirm that the helium content has a marginal effect on the pulsation properties. The key parameter causing the difference between canonical and He-enhanced observables is the luminosity. We compared current predictions with the sample of 189 RR Lyrae stars in omega Cen and we found that the period range of He-enhanced models is systematically longer than observed. These findings apply to metal-poor and metal-intermediate He-enhanced models. To further constrain the impact of He-enhanced structures on the period distribution we also computed a series of synthetic HB models and we found that the predicted period distribution, based on a Gaussian sampling in mass, agrees quite well with observations. This applies not only to the minimum fundamentalized period of RR Lyrae stars (0.39 vs 0.34 day), but also to the fraction of Type II Cepheids (2% vs 3%). We also computed a series of synthetic HB models assuming a mixed HB population in which the 80% is made of canonical HB structures, while the 20% is made of He-enhanced (Y=0.30) HB structures. We found that the fraction of Type II Cepheids predicted by these models is almost a factor of two larger than observed (5% vs 3%). This indicates that the fraction of He-enhanced structures in omega Cen cannot be larger than 20%.
232 - Marcella Marconi 2009
RR Lyrae stars play an important role as distance indicators and stellar population tracers. In this context the construction of accurate pulsation models is crucial to understand the observed properties and to constrain the intrinsic stellar paramet ers of these pulsators. The physical mechanism driving pulsation in RR Lyrae stars has been known since the middle of the 20th century and many efforts have been performed during the last few decades in the construction of more and more refined pulsation models. In particular, nonlinear pulsation models including a nonlocal time-dependent treatment of convection, such as the ones originally developed in Los Alamos in the seventies, allow us to reproduce all the relevant observables of radial pulsation and to establish accurate relations and methods to constrain the intrinsic stellar properties and the distance of these variables. The most recent results on RR Lyrae pulsation obtained through these kinds of models will be presented and a few still debated problems will be discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا