ترغب بنشر مسار تعليمي؟ اضغط هنا

We search for the Fe K${alpha}$ line in spectra of Ultra Compact X-ray Binaries (UCXBs). For this purpose we have analyzed XMM-Newton observations of five confirmed UCXBs. We find that the object 2S 0918-549 - whose optical spectrum bears tentative s ignatures of a C/O accretion disk - is devoid of any emission features in the 6-7 keV range, with an upper limit of less than 10 eV for the equivalent width (EW) of the iron line. 4U 1916-05 - whose optical spectrum is consistent with reflection from a He-rich accretion disk - exhibits a bright broad iron emission line. This behavior is in agreement with the theoretical predictions presented in Koliopanos, Gilfanov and Bildsten (2013). Namely, we expect strong suppression of the Fe K${alpha}$ emission line in spectra originating in moderately bright (LogLx less than $approx$ 37.5) UCXBs with C/O or O/Ne/Mg-rich donors. On the other hand the EW of the iron line in spectra from UCXBs with He-rich donors is expected to retain its nominal value of $approx$ 100 eV. Our analysis also reveals a strong Fe K${alpha}$ line in the spectrum of 4U 0614+091. This detection points towards a He-rich donor and seems to be at odds with the sources classification as C/O-rich. Nevertheless, a He-rich donor would explain the bursting activity reported for this system. Lastly, based on our theoretical predictions, we attribute the lack of a strong iron emission line - in the two remaining UCXB sources in our sample (XTE J1807-294, 4U 0513-40) - as an indication of a C/O or O/Ne/Mg white dwarf donor. From the upper limits of the Fe K${alpha}$ line EW in 4U 0513-40, 2S 0918-549 and XTE J1807-294 we obtain a lower limit on the oxygen-to-iron ratio,O/Fe$ge$ 10$times$[O/Fe]$_{odot}$.
The four-year X-ray all-sky survey (eRASS) of the eROSITA telescope aboard the Spektrum-Roentgen-Gamma satellite will detect ~3 million active galactic nuclei (AGN) with a median redshift of z~1 and a typical luminosity of L_(0.5-2.0 keV) ~ 10^(44) e rg/s. We show that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure research. For the first time, detailed redshift- and luminosity-resolved studies of the bias factor for X-ray selected AGN will become possible. The eRASS AGN sample will not only improve the redshift- and luminosity-resolution of these studies, but will also expand their luminosity range beyond L_(0.5-2.0 keV) ~ 10^(44) erg/s, thus enabling a direct comparison of the clustering properties of luminous X-ray AGN and optical quasars. These studies will dramatically improve our understanding of the AGN environment, triggering mechanisms, the growth of supermassive black holes and their co-evolution with dark matter halos. The eRASS AGN sample will become a powerful cosmological probe. It will enable detecting baryonic acoustic oscillations (BAOs) for the first time with X-ray selected AGN. With the data from the entire extragalactic sky, BAO will be detected at a >~10sigma confidence level in the full redshift range and with ~8sigma confidence in the 0.8 < z < 2.0 range, which is currently not covered by any existing BAO surveys. To exploit the full potential of the eRASS AGN sample, photometric and spectroscopic surveys of large areas and a sufficient depth will be needed.
Non-solar composition of the donor star in ultra-compact X-ray binaries may have a pronounced effect on the fluorescent lines appearing in their spectra due to reprocessing of primary radiation by the accretion disk and the white dwarf surface. We sh ow that the most dramatic and easily observable consequence of the anomalous C/O abundance, is the significant, by more than an order of magnitude, attenuation of the Ka line of iron. It is caused by screening of the presence of iron by oxygen - in the C/O dominated material the main interaction process for a E ~ 7keV photon is absorption by oxygen rather than by iron, contrary to the solar composition case. Ionization of oxygen at high mass accretion rates adds a luminosity dependence to this behavior - the iron line is significantly suppressed only at low luminosity, log(LX) less than 37-37.5, and should recover its nominal strength at higher luminosity. The increase of the EW of the Ka lines of carbon and oxygen, on the other hand, saturates at rather moderate values. Screening by He is less important, due to its low ionization threshold and because in the accretion disk it is mostly ionized. Consequently, in the case of the He-rich donor, the iron line strength remains close to its nominal value, determined by the iron abundance in the accretion disk. This opens the possibility of constraining the nature of donor stars in UCXBs by means of X-ray spectroscopy with moderate energy resolution.
Context. The main element of the observing program of the Spectrum-Roentgen-Gamma orbital observatory is a four-year all-sky survey, in the course of which the entire sky will be scanned eight times. Aims. We analyze the statistical properties of A GN and QSOs that are expected to be detected in the course of the eROSITA all-sky survey (eRASS). Methods. According to the currently planned survey strategy and based on the parameters of the Galactic and extragalactic X-ray background as well as on the results of the recent calculations of the eROSITA instrumental background, we computed a sensitivity map of the eRASS. Using the best available redshift-dependent AGN X-ray luminosity function (XLF), we computed various characteristics of the eRASS AGN sample, such as their luminosity- and redshift distributions, and the brightness distributions of their optical counterparts. Results. After four years of the survey, a sky-average sensitivity of ~1x10^(-14) erg/s/cm^2 will be achieved in the 0.5-2.0keV band. With this sensitivity, eROSITA is expected to detect ~3 million AGN on the extragalactic sky (|b|>10deg). The median redshift of the eRASS AGN will be z~1 with ~40% of the objects in the z=1-2 redshift range. About 10^4 - 10^5 AGN are predicted beyond redshift z=3 and about 2 000 - 30 000 AGN beyond redshift z=4, the exact numbers depend on the poorly known behavior of the AGN XLF in the high-redshift and luminosity regimes. Of the detected AGN, the brightest 10% will be detected with more than ~38 counts per PSF HEW, while the faintest 10% will have fewer than ~9 counts. The optical counterparts of ~95% of the AGN will be brighter than I_(AB)=22.5mag. The planned scanning strategy will allow one to search for transient events on a timescale of half a year and a few hours with a 0.5-2.0keV sensitivity of ~2x10^(-14) to ~2x10^(-13) erg/s/cm^2, respectively.
For the first time, we have systematically explored the population of discrete X-ray sources in the outskirts of early-type galaxies. Based on a broad sample of 20 galaxies observed with Chandra we detected overdensity of X-ray sources in their outsk irts. The overdensity appears as halos of resolved sources around the galaxies. These halos are broader than the stellar light, extending out to at least ~ 10 Re (Re is the effective radius). These halos are composed of sources fainter than ~5E38 erg/s, whereas the more luminous sources appear to follow the distribution of the stellar light, suggesting that the excess source population consists of neutron star binaries. Dividing the galaxy sample into four groups according to their stellar mass and specific frequency of globular clusters, we find that the extended halos are present in all groups except for the low-mass galaxies with low globular cluster content. We propose that the extended halos may be comprised of two independent components, low-mass X-ray binaries (LMXBs) located in globular clusters (GCs), which are known to have a wider distribution than the stellar light, and neutron star (NS) LMXBs kicked out of the main body of the parent galaxy by supernova explosions. The available deep optical and X-ray data of NGC 4365 support this conclusion. For this galaxy we identified 60.1+/-10.8 excess sources in the 4-10 Re region of which ~ 40% are located in GCs, whereas ~ 60% are field LMXBs. We interpret the latter as kicked NS LMXBs. We discuss the implications of these results for the natal kick distributions of black holes and neutron stars.
384 - Zhongli Zhang 2012
We investigate the dependence of the low-mass X-ray binary (LMXB) population in early-type galaxies on stellar age, by selecting 20 massive nearby early-type galaxies from the Chandra archive occupying a relatively narrow range of masses and spanning a broad range of ages, from 1.6 Gyr to more than 10 Gyrs, with the median value of 6 Gyrs. With the ~ 2000 X-ray point sources detected in total, we correlated the specific number of LMXBs in each galaxy with its stellar age and globular cluster (GC) content. We found a correlation between the LMXB population and stellar age: older galaxies tend to possess about ~50% more LMXBs (per unit stellar mass) than the younger ones. The interpretation of this dependence is complicated by large scatter and a rather strong correlation between stellar age and GC content of galaxies in our sample. We present evidence suggesting that the more important factor may be the evolution of the LMXB population with time. Its effect is further amplified by the larger GC content of older galaxies and correspondingly, the larger numbers of dynamically formed binaries in them. We also found clear evolution of the X-ray luminosity function (XLF) with age, that younger galaxies have more bright sources and fewer faint sources per unit stellar mass. The XLF of LMXBs in younger galaxies appears to extend significantly beyond E39 erg/s. Such bright sources seem to be less frequent in older galaxies. We found that 6 out of ~ 12 (ultra-) luminous sources are located in GCs.
Based on the archival data from the Chandra observations of nearby galaxies, we study different sub populations of low-mass X-ray binaries (LMXBs) - dynamically formed systems in globular clusters (GCs) and in the nucleus of M31 and (presumably primo rdial) X-ray binaries in the fields of galaxies. Our aim is to produce accurate luminosity distributions of X-ray binaries in different environments, suitable for quantitative comparison with each other and with the output of population synthesis calculations. Our sample includes seven nearby galaxies (M31, Maffei 1, Centaurus A,M81, NGC 3379, NGC 4697, and NGC 4278) and the Milky Way, which together provide relatively uniform coverage down to the luminosity limit of E35 erg/s. In total we have detected 185 LMXBs associated with GCs, 35 X-ray sources in the nucleus of M31, and 998 field sources of which ~ 365 are expected to be background AGN. We combine these data, taking special care to accurately account for X-ray and optical incompleteness corrections and the removal of the contamination from the cosmic X-ray background sources, to produce luminosity distributions of X-ray binaries in different environments to far greater accuracy than has been obtained previously. We found that luminosity distributions of GC and field LMXBs differ throughout the entire luminosity range, the fraction of faint (log(Lx) < 37) sources among the former being ~ 4 times less than in the field population. The X-ray luminosity function (XLF) of sources in the nucleus of M31 is similar to that of GC sources at the faint end but differs at the bright end, with the M31 nucleus hosting significantly fewer bright sources. We discuss the possible origin and potential implications of these results.
42 - Stefano Mineo 2010
We study the relation between the X-ray luminosity of compact sources and the SFR of the host galaxy. Our sample includes 38 galaxies for which a uniform set of X-ray, infra-red and ultraviolet data from Chandra, Spitzer and GALEX has been collected. Our primary goals are (i) to obtain a more accurate calibration of the Lx-SFR relation and (ii) to understand the origin of the dispersion in the Lx-SFR relation observed in previous studies. Preliminary results of this project are reported below.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا