ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova Remnants (SNRs) are believed to be acceleration sites of Galactic cosmic rays. Therefore, deep studies of these objects are instrumental for an understanding of the high energy processes in our Galaxy. RX J0852.0-4622, also known as Vela Ju nior, is one of the few (4) shell-type SNRs resolved at Very High Energies (VHE; E > 100 GeV). It is one of the largest known VHE sources (~ 1.0 deg radius) and its flux level is comparable to the flux level of the Crab Nebula in the same energy band. These characteristics allow for a detailed analysis, shedding further light on the high-energy processes taking place in the remnant. In this document we present further details on the spatial and spectral morphology derived with an extended data set. The analysis of the spectral morphology of the remnant is compatible with a constant power-law photon index of 2.11 +/- 0.05_stat +/- 0.20_syst from the whole SNR in the energy range from 0.5 TeV to 7 TeV. The analysis of the spatial morphology shows an enhanced emission towards the direction of the pulsar PSR J0855-4644, however as the pulsar is lying on the rim of the SNR, it is difficult to disentangle both contributions. Therefore, assuming a point source, the upper limit on the flux of the pulsar wind nebula (PWN) between 1 TeV and 10 TeV, is estimated to be ~ 2% of the Crab Nebula flux in the same energy range.
Supernova remnants (SNRs) are widely considered to be accelerators of cosmic rays (CR). They are also expected to produce very-high-energy (VHE; $E > 100$ GeV) gamma rays through interactions of high-energy particles with the surrounding medium and p hoton fields. They are, therefore, promising targets for observations with ground-based imaging atmospheric Cherenkov telescopes like the H.E.S.S. telescope array. VHE gamma-ray emission has already been discovered from a number of SNRs, establishing them as a prominent source class in the VHE domain. Of particular interest are the handful of SNRs whose X-ray spectra are dominated by non-thermal synchrotron emission, such as the VHE gamma-ray emitters RX J0852.0-4622 (Vela Jr.) and RX J1713-3946. The shell-type SNRs G1.9+0.3 and G330.2+1.0 also belong to this subclass and are further notable for their young ages ($leq 1$ kyr), especially G1.9+0.3, which was recently determined to be the youngest SNR in the Galaxy ($sim100$ yr). These unique characteristics motivated investigations with H.E.S.S. to search for VHE gamma rays. The results of the H.E.S.S. observations and analyses are presented, along with implications for potential particle acceleration scenarios.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا